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Abstract

Inference-time computation techniques, analogous to human System 2 Thinking,
have recently become popular for improving model performances. However, most
existing approaches suffer from several limitations: they are modality-specific
(e.g., working only in text), problem-specific (e.g., verifiable domains like math
and coding), or require additional supervision/training on top of unsupervised
pretraining (e.g., verifiers or verifiable rewards). In this paper, we ask the question

“Is it possible to generalize these System 2 Thinking approaches, and develop models
that learn to think solely from unsupervised learning?” Interestingly, we find the
answer is yes, by learning to explicitly verify the compatibility between inputs and
candidate-predictions, and then re-framing prediction problems as optimization
with respect to this verifier. Specifically, we train Energy-Based Transformers
(EBTs)—a new class of Energy-Based Models (EBMs)—to assign an energy (un-
normalized probability) value to every input and candidate-prediction pair, enabling
predictions through gradient descent-based energy minimization until convergence.
This formulation enables System 2 Thinking to emerge from unsupervised learn-
ing, making it modality and problem agnostic. Across both discrete (text) and
continuous (visual) modalities, we find EBTs scale faster than the dominant Trans-
former++ approach during training, achieving an up to 35% higher scaling rate with
respect to data, batch size, parameters, FLOPs, and depth. During inference, EBTs
improve performance with System 2 Thinking (i.e., extra computation) by 29%
more than the Transformer++ on language tasks, and EBTs outperform Diffusion
Transformers on image denoising while using fewer forward passes. Further, we
find that System 2 Thinking with EBTs yields larger performance improvements
on data that is farther out-of-distribution, and that EBTs achieve better results than
existing models on most downstream tasks given the same or worse pretraining
performance, suggesting that EBTs generalize better than existing approaches.
Consequently, EBTs are a promising new paradigm for scaling both the learning
and thinking capabilities of models.

1 Introduction

In psychology, human thinking is often classified into two different types: System 1 (thinking fast) and
System 2 (thinking slow) [1–4]. System 1 thinking is characterized by quick, intuitive and automatic
responses, relying on previous experience to solve simple or familiar problems. Alternatively, System
2 Thinking is slow, deliberate and analytical, requiring conscious effort and logical reasoning to
process more complex information. System 2 Thinking is essential for complex problems that go
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Existing Autoregressive Approaches

Figure 1: Autoregressive Architecture Comparison. (a) Autoregressive (AR) Transformer is the
most common, with (b) RNNs becoming more popular recently [22, 23]. (c) Diffusion Transform-
ers [26] (which are often bidirectional but can also be autoregressive) are the most similar to EBT,
being able to dynamically allocate computation during inference, but predict the noise rather than the
energy [27, 28]. Consequently, diffusion models cannot give unnormalized likelihood estimates at
each step of the thinking process, and are not trained as explicit verifiers, unlike EBTs.

beyond automatic pattern recognition, such as in mathematics, programming, multistep reasoning, or
novel out-of-distribution situations [5, 6], where precision and depth of understanding are important.
Although current models perform well on tasks suitable for System 1 thinking [7], they continue to
struggle with tasks that demand System 2 capabilities [8–10].

Consequently, the recent pursuance of System 2 Thinking capabilities has become a growing interest
among AI researchers, leading to the rise of several foundation models such as O1 [11], R1 [12],
Grok3 [13], and Claude 3.7 Sonnet [14]. These “reasoning models” excel on math and coding
benchmarks, particularly by increasing the time models spend thinking. However, publicly available
information on training methods, particularly from the open-source R1 model [12], suggests that
the Reinforcement Learning (RL) based training approach for these models only works in domains
where rule-based rewards can easily verify answers, such as math and coding. This limitation reduces
applicability to a small range of problem types, and as a consequence, often deteriorates performance
in other tasks such as writing [15–17]. Further, recent evidence suggests this RL-based approach
may not induce new reasoning patterns, but rather just increase the probability of reasoning patterns
already known to the base model [18], which limits performance on problems requiring exploration.

Along similar lines, there has been strong interest in achieving System 2 Thinking in both diffusion
models and Recurrent Neural Networks (RNNs). Diffusion models support iterative inference
through denoising steps, where increasing denoising steps can improve performance. However,
they typically fail to benefit from denoising steps beyond what they were trained on [19], and aside
from increasing denoising steps, diffusion models require an external verifier to improve System 2
Thinking capabilities [19–21]. RNNs also offer iterative computation via recurrent state updates [22–
24], however, most modern RNNs only update their internal state with new information, meaning
they cannot be used for thinking longer. Additionally, RNNs that do support recurrent depth still lack
mechanisms for explicit verification [25], resulting in limited adoption for System 2 Thinking.

As one of the primary goals of AI is to figure out how we can create systems that learn to think
on their own on any type of problem, these approaches ultimately bring about the following core
research question: “Can we rely entirely on unsupervised learning to develop System 2 Thinking?”
Such a capability would enable generalization of current System 2 Thinking approaches to any
problem, any modality, and avoid the reliance on external human, reward, or model supervision.

In this work, we argue and demonstrate empirically that the answer to this core research question
is yes, but that there are several limitations in existing model architectures that prevent this type
of unsupervised System 2 Thinking from emerging. Particularly, when comparing the qualities of
human System 2 Thinking with the current modeling paradigms (Figure 1, Table 1), we observe
several key differences, outlined below as three key Facets of System 2 Thinking1:

1We acknowledge that these are not comprehensive for achieving System 2 Thinking, but rather, a good first
step (more info is in Section C.1).
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Table 1: Architectures and Cognitive Facets. For each prediction, Feed Forward (FF) Transformers
and RNNs generally2 have a finite amount of computation. While diffusion models have potentially
more computation during inference by increasing the number of denoising steps, they do not learn
to explicitly verify or estimate uncertainty for predictions. EBMs can use a dynamic amount of
computation during inference by iterating for any number of steps, and give an energy scalar that can
be used to evaluate uncertainty and verify the strength of predictions.

Architecture Dynamic Compute
Allocation (Facet 1)

Modeling
Uncertainty (Facet 2)

Prediction
Verification (Facet 3)

FF Transformers ✗ ✗ ✗
RNNs ✗ ✗ ✗
Diffusion Transformers ✓ ✗ ✗
EBTs ✓ ✓ ✓

Facet 1: Dynamic Allocation of Computation. Humans naturally allocate varying amounts of
effort to different tasks depending on difficulty, which is widely supported by psychology and
neuroscience [1, 31, 32]. As the difficulty of tasks humans face varies widely, the ability to adjust
the magnitude of computational resources allocated towards a task is fundamental to success.3 For
example, a decision regarding whether to change careers generally takes people much more time than
deciding what to eat for lunch.

Facet 2: Modeling Uncertainty in Continuous State Spaces. While thinking longer is important
for improving performance, humans also weigh how uncertain they are before committing to a
decision. In language, LLMs can simulate this through token-level probabilities [33]. In the context
of continuous state spaces, such as in vision, without the usage of discretization schemes such as
Vector Quantization [34] or pseudo losses/objectives (such as ELBO [35]), standard implementations
of the most successfully used approaches with Transformers, RNNs, or Diffusion models generally do
not provide strong or reliable uncertainty estimates [36–39].4 EBMs can naturally model uncertainty
without having to model exact likelihoods by modeling the relative unnormalized likelihoods of
predictions [42], as demonstrated in Figure 3. As the real world often contains many inherently
unpredictable elements, for instance, when a pedestrian might emerge from behind a parked vehicle,
the ability to express uncertainty in predictions is essential to being cautious, and is a natural capability
of humans [43–45].

Facet 3: Verification of Predictions. In addition to allocating computation and modeling uncertainty,
effective thinking also benefits from the ability to verify predictions, which can guide decisions about
when to stop thinking or to select the most accurate predictions. There is strong evidence that such
verification is a core component of human thinking [46, 47]. In fact, it can be shown that verifying
solutions is exponentially easier than generating solutions [48], which means that verifiers can often
generalize better than explicit generators [48]. Training an explicit verifier means that at each step of
the thinking process an estimate of the current prediction’s quality can be extracted. This supports
more dynamic inference time behavior such as early stopping when a prediction is known to be
correct or allocating more compute when a problem is difficult, which can intuitively be seen as
adjusting resources according to the difficulty of a problem [1]. Training an explicit verifier also
allows for capabilities such as Monte Carlo Tree Search [49] or sampling many times and choosing
the best prediction, which traditionally have involved training new models on more data [19, 50].

For more information on additional Facets, please refer to Section F.

2Recent works attempt to enable dynamic computation per prediction [25, 29, 30], but these approaches
are generally not modality agnostic and have not been widely adopted. While RNNs can theoretically support
dynamic computation, they are typically updated only with new state information, except in specialized cases
such as in [25].

3It’s important to note that we refer to this dynamic computation capability at the granularity of each
prediction being made, meaning current LLMs built with traditional AR transformers/RNNs cannot dynamically
allocate compute per token generated as they have a finite depth/width and are only updated with new text tokens.
Please check Section G for more information.

4We acknowledge that there are approaches to achieve uncertainty with the models discussed, such as Mixture
Density Networks [40] as well as score-based diffusion models [41]. However, these approaches have seen less
widespread success and scalability than the current dominant approaches.
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Figure 2: EBT for Autoregressive Modeling. Each blue box corresponds to a different prediction
based on the current step of the thinking process, where the initial prediction starts as random. At
each step, a new prediction is fed into the model, which gives an energy scalar for the prediction’s
current compatibility (unnormalized likelihood) with the context (Facets 2 and 3). Then, the gradient
of this energy with respect to the prediction is calculated and used to update the prediction. This
gradient descent update is done iteratively to refine the prediction until convergence of the predicted
energy, which allows for dynamic use of computation (Facet 1).

To achieve all facets described, we propose viewing thinking as an optimization procedure with
respect to a learned verifier, which evaluates the compatibility (unnormalized probability) between an
input and candidate prediction (Figure 2). More concretely, we train Energy-Based Models (EBMs) to
learn an energy (unnormalized probability) landscape over all possible input-prediction pairs, where
lower energy indicates higher compatibility. Then, thinking corresponds to starting from an initial
random prediction, and progressively refining it through energy minimization until convergence
(visualized in Figure 3). Optimizing over a learned energy landscape naturally allows for dynamic
compute allocation (Facet 1), allowing models to think for longer on harder problems by iteratively
performing more steps. Additionally, at each step of this thinking process, EBMs act as verifiers
in the forward pass, giving an energy scalar which represents the compatibility of the context with
the prediction. This energy scalar directly addresses Facets 2 and 3 by serving as an unnormalized
likelihood as well as the score that verifies whether a prediction is correct (Figure 3).

While viewing thinking through the lens of inference-time energy minimization is a promising
perspective, EBMs have traditionally struggled with scalability [51], with zero publicly known
Foundation EBMs. This can be attributed to issues with EBM training stability [51–54] and long
training times [53, 54]. To address these challenges and establish a scalable EBM training paradigm,
we introduce Energy-Based Transformers (EBTs), Transformer implementations specifically for
EBMs. We release two variants: a decoder-only EBT inspired by the GPT architecture [55], which
parallelizes all predictions simultaneously; and a bidirectional EBT, enabling bidirectional attention
across entire sequences, similar to BERT [56] and Diffusion Transformers (DiT) [26].

Additionally, we identify practical enhancements that improve the training efficiency of EBTs and
provide theoretical insights into why our optimization-based training approach achieves strong
scalability. Finally, we introduce energy landscape regularization techniques, which are methods that
enhance the convexity and smoothness of learned energy landscapes, thereby fostering the emergence
of strong System 2 Thinking capabilities during pretraining.

To investigate the learning and thinking scalability of EBTs, we compare EBTs to the Transformer++
for autoregressive modeling and the Diffusion Transformer (DiT) for bidirectional modeling, across
both discrete and continuous modalities. During pretraining, we find that EBTs achieve an up to
35% higher scaling rate than the Transformer++ across several axes, including data, batch size,
parameters, FLOPs, and depth. Notably, EBTs are the first approach to out-scale the standard
feed-forward Transformer++ recipe across several modalities and axes, including improved data
efficiency. At inference, EBTs outperform existing paradigms on System 2 Thinking, or solving
more challenging problems with additional computation. For example, EBTs can improve language
modeling performance 29% more than the Transformer++, and for image denoising EBTs exhibit
a higher performance-compute scaling rate and improved performance over DiTs with 99% fewer
forward passes. In investigations of the effect of System 2 Thinking on generalization, we consistently
observe two phenomena. First, with the same or worse pretraining performance, EBTs still outperform
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Figure 3: Thinking Process Visualization. A learned energy landscape and its optimization
through gradient descent, interpreted as a thinking process. In this example, the model predicts a
distribution over text tokens, progressively shifting from an initial random distribution toward the
target distribution. At each step, the EBM assigns an energy scalar indicating how compatible the
current prediction is with the context, visualized as the landscape’s height (Facet 3). This scalar’s
convergence allows the model to determine whether the prediction is adequate or if further thinking
is necessary. Uncertainty (Facet 2) can be represented by landscapes that are harder to optimize or by
landscapes with many local minima, allowing the model to know when it requires more steps to think
(Facet 1). Adapted from [57].

existing models at inference by performing System 2 Thinking, demonstrating its importance and
how EBTs often generalize better than existing models. Second, System 2 Thinking with EBTs
yields more substantial performance gains on data that is further out-of-distribution, aligning with
observations in psychology where humans use System 2 Thinking on challenging, unseen tasks.

We believe the EBT implementations, along with novel techniques for EBMs to maximize the learning
and thinking scalability, will advance the EBM paradigm by addressing key challenges in stable,
parallelizable, and efficient training.

2 Energy-Based Transformers (EBT) Intuition

Energy-Based Models (EBMs) learn an energy function that assigns a scalar value to each input
configuration, with lower energy indicating higher compatibility or likelihood between input vari-
ables [51], and high energy indicating lower compatibility or likelihood. Accordingly, the energy
function acts as a verifier of input data coherence. Leveraging this principle, Energy-Based Trans-
formers (EBTs) are trained to verify the compatibility of a given context-prediction pair (give an
energy value), and then make predictions by optimizing with respect to this verifier (minimizing
the energy), which is shown in Figure 2. Starting from an initial prediction, such as random noise,
EBTs iteratively refine their output by progressively minimizing the energy, ultimately converging to
predictions that are consistent with the given context. Performing energy minimization through this
process simulates the thinking process during pretraining, unlike with traditional models, enabling
each prediction (e.g., a token for LLMs) to have its own thinking process.

2.1 Learning to Verify

Verifying solutions is often substantially more tractable than generating them, a distinction well-
established in complexity theory and foundational to developments in knowledge proofs and learning
algorithms [58–60]. For example, in solving a maze, verifying the correctness of a given path is
significantly easier than discovering such a path. This asymmetry has been recognized and utilized
for several decades, notably in the field of cryptography [59, 61, 62]. EBMs are built on this principle
that verification is easier than generation: rather than learning to generate directly, as in most existing
paradigms, EBMs learn to generate by optimizing predictions with respect to this learned verification
(energy function); this is depicted in Figure 3.
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Recent works have attempted to leverage this characteristic of verifiers [19, 63–65], but these
approaches decouple the verifier and generator, resulting in adversarial dynamics [19] and challenges
in scalability [64]. For example, researchers combining tree search and LLMs required thousands
or even millions of samples to achieve optimal performance [63]. In contrast, EBMs combine the
verifier and generator into a single model, where the generator is defined implicitly by the gradient
of the verifier [51]. We show that this coupling resolves scalability and adversarial issues (Figures 6b
and B.1a).

An additional advantage of verifiers is generalization. Because verification is usually easier than gen-
eration [66], prediction verification on Out-Of-Distribution (OOD) data is often easier than explicit
prediction generation for OOD data [48]. This characteristic often results in better generalization of
verifiers than explicit generators [48]. As an example, models trained to explicitly solve mazes on a
small grid may not generalize to larger grids, whereas verifiers for maze solutions learn whether a
path is correct, which more easily transfers to larger mazes. This characteristic may be why EBMs
often generalize better than existing models [48, 67], which we further support in our larger-scale
experiments (Figure 6a and Table 4).

2.2 Learning to Understand

This verifier-centric perspective also relates to a deeper limitation in contemporary generative models,
referred to as “The Generative AI Paradox [68].” Although current generative models achieve strong
generative capabilities, they frequently lack basic discrimination skills, such as the ability to assess
the plausibility or coherence of their own predictions [68, 69]. These limitations impede their ability
to engage in reasoning, planning, and decision-making [9, 70]. In contrast, EBMs offer a potential
solution to this challenge: as EBMs generate by learning a verifier (which is conceptually similar to a
discriminator), they develop strong discrimination skills [71]. Experimental results further support
this observation (Table 4).

3 Energy-Based Transformers (EBT) Approach

3.1 Energy-Based Models (EBM) Background

Energy-Based Models (EBMs) assign a scalar energy value to each configuration of input variables,
enabling them to model the compatibility and interactions between variables, such as between
a context and candidate-prediction. In the case of probabilistic EBMs, this defines a probability
distribution using a Boltzmann distribution pθ(x) = e−Eθ(x)

Z(θ) where Z(θ) =
∫
e−Eθ(x)dx is the

intractable partition function involving an integral over all possible values of x. Due to the negative
exponential, lower energy corresponds to higher probability, and higher energy corresponds to
lower probability. To avoid the intractability of the partition function, it is common to work with
unnormalized EBMs, which dispense of the partition function in favor of representing relative
unnormalized probabilities. This formulation shifts the focus from addressing the partition function,
to simply assigning low energy to the true data manifold and high energy elsewhere [42, 51], offering
benefits such as scalability to spaces where the true data manifold is thin and therefore a probabilistic
EBMs would have an infinite score [42]. In supervised or predictive self-supervised learning (e.g.,
classification, autoregressive modeling, masked modeling), unnormalized EBMs can be formulated as:
pθ(x, ŷ) ∝ e−Eθ(x,ŷ), where the goal of the EBM is to learn to predict ŷ given x.5 For an accessible
and beginner-friendly introduction to EBMs, including intuitive explanations and pseudocode, please
refer to Section H.

3.2 Scalable EBM Learning

While EBMs offer a flexible modeling framework, training them scalably remains an open research
problem. Two primary training approaches exist—contrastive and regularized methods [72]. Con-
trastive methods increase the energy of negative samples while decreasing the energy of positive
samples. Due to the curse of dimensionality, where the volume of spaces grows exponentially with

5In the case of self-supervised learning, x is some unmasked portion of the original x and ŷ is the masked
portion.
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Algorithm 1: Training
Inputs: Context x, Target y, EBM Eθ(x, ŷ)
Hparams: Steps N , Step Size α, Loss J(·)

1 Sample ŷ0 ∼ N (0, I);
2 for i = 0, . . . , N − 1 do
3 ŷi+1 ← ŷi − α∇ŷiEθ(x, ŷi);
4 L ← J(ŷN , y);
5 return L, update Eθ;

Algorithm 2: Inference with Verification
Inputs: Context x, EBM Eθ(x, ŷ)
Hparams: Steps N , Step Size α, Samples M

1 for j = 1, . . . ,M do
2 Sample ŷ0,j ∼ N (0, I);
3 for i = 0, . . . , N − 1 do
4 ŷi+1,j ← ŷi,j − α∇ŷi,jEθ(x, ŷi,j);
5 return ŷ∗ = argminj Eθ

(
x, ŷN,j

)
;

their dimension, contrastive methods struggle to scale because they must increase the energy of an
exponentially higher number of negative samples [42].

An alternative is to frame EBM learning as an optimization problem [48, 71], which avoids the curse
of dimensionality by implicitly regularizing the energy landscape, enabling scalable learning. In this
approach, EBMs are trained to optimize an initial prediction to the ground truth solution through
gradient descent, as shown in Figure 3. This pushes the energy landscape to be convex surrounding
the ground truth solution, thereby regularizing the energy landscape to only have low energy on the
true data manifold. Intuitively, this training approach is similar to GANs [73]. During the forward
pass, EBMs can be seen as a GAN discriminator by giving an energy “verification”; on the backward
pass they can be seen a GAN generator by optimizing predictions through energy minimization to try
and fool the discriminator.

Training EBMs to perform optimization can be formalized as follows. We begin with an EBM Eθ,
a prior (initial prediction) ŷ0, an input (context) for the model x, and seek to predict y. We aim to
find the minimum energy (most compatible/likely) ŷ given an x, which we search for using gradient
descent:

ŷi+1 = ŷi − α∇ŷiEθ(x, ŷi), (1)

where α is the step size (this is formalized in Algorithm 1). Then, the loss can be computed using
any standard objective function. For this work, we use the same loss functions as existing papers
to simplify experiments, so we use categorical cross-entropy for language modeling [74] and mean
squared error for image denoising [75]. Importantly, this loss is backpropagated through the entire
optimization process, requiring second-order derivatives (i.e., gradients of gradients). These are
computed efficiently via Hessian-vector products, which scale linearly with model size [76], similar
to standard first-order backpropagation in feed-forward models. More details and pseudocode can be
found in Section I.2.

3.3 Scalable EBM Thinking

While this training approach is scalable, achieving smooth and convex energy landscapes, such as the
landscape visualized in Figure 3, remains challenging on real-world problems. Because y is high-
dimensional, the energy landscape spans a high-dimensional space, and must remain well-shaped
throughout. To address this, we found three key energy landscape regularization techniques to be
essential in ensuring the smoothness and convexity of learned energy landscapes, enabling strong
thinking capabilities to be learned during training.

First, we found a replay buffer (following existing EBM works [48, 51]) helps simulate longer
optimization trajectories, enabling energy landscapes to be well defined near their minimum. Second,
a variant of Langevin Dynamics [51] (random noise), was found to be helpful for encouraging
exploration of the energy landscape:

ŷi+1 = ŷi − α∇ŷiEθ

(
x, ŷi

)
+ ηi, ηi ∼ N (0, σ), (2)

where σ is the magnitude of the noise η. Without this random noise term, exploration is often limited
to paths leading directly to the energy minimum, leaving other regions poorly defined. Third, varying
the paths taken towards predicting solutions, by randomizing the gradient descent step size α and
number of optimization steps, significantly improved generalization. Together, these techniques
substantially improved the System 2 Thinking capabilities of models, as confirmed by ablation
experiments in Table 2.

With these energy landscape regularization techniques established, to understand the System 2
Thinking capabilities of EBTs, we explored two main thinking approaches, corresponding to two of
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the cognitive facets described. First, corresponding to dynamic computation allocation (Facet 1), we
conduct experiments that involve changing the number of steps taken for optimization of a single
prediction. This is conceptually similar to increasing the denoising steps performed with a diffusion
model. Second, corresponding to the ability to verify predictions (Facet 3), we generate N predictions
from an EBM and then choose the minimum energy prediction. This is conceptually similar to
Best of N (BoN) sampling using language models [77]. However, EBMs generalize this approach
to both discrete and continuous modalities, don’t require additional supervision (e.g., an external
reward/verification model), and perform it on every single prediction, not just to entire sequences. We
demonstrate performance improvements gained from both of these techniques in several Thinking
experiments (Figures 6, 7, and 12), which further confirm the importance of the described cognitive
facets. This thinking process is formalized in Algorithm 2 and we more formally define and justify
usage of the term thinking in Section C.1.

3.4 Energy-Based Transformers (EBTs) Architecture

Transformers have demonstrated exceptional performance across numerous domains [12, 78–81].
Three primary advantages of Transformers include their parallelizability [82, 83], their stability [84],
and their scalability [85]. Because Energy-Based Models (EBMs) have encountered difficulties with
all three of these characteristics [51–54], Transformers represent a particularly suitable architecture
for scaling EBMs. Consequently, to advance the EBM paradigm, we introduced Energy-Based
Transformers (EBTs), which are Transformer implementations designed for EBMs. We developed
two variants: a decoder-only EBT, inspired by the GPT architecture [55] for autoregressive modeling,
as well as a bidirectional EBT with bidirectional attention across sequences, enabling capabilities
such as infilling and masked modeling [26, 56]. Although the bidirectional EBT implementation
is relatively straightforward, the autoregressive EBT presents greater implementation challenges,
primarily due to the potential for information leakage in naïve implementations. Comprehensive
details of this implementation are discussed in Section C.3.

4 Experimentation and Results

We experiment with EBT across both Autoregressive (AR) [82] as well as Bidirectional models [56]
in discrete and continuous spaces.6 In discrete spaces, we focus primarily on the language modeling
objective. In continuous spaces, we focus on vision tasks of next frame prediction and image
denoising. We perform the most comprehensive experiments using Autoregressive Language Models
trained to predict the next token, as this is the most extensively studied pretraining approach [86]. All
models are pretrained from scratch under a tightly constrained compute budget, as the architecture of
EBTs is incompatible with existing foundation models, making them incompatible for adaptation
via fine-tuning. We focus on two primary types of results. First, we examine learning scalability,
investigating how quickly models can fit the pretraining data, which is standard in the pretraining
literature [22, 85–90].

Second, we study thinking scalability, or how the performance of models changes as we scale
the System 2 Thinking of models (Definition C.1). To measure the thinking scalability, we use the
Number of Function Evaluations (NFEs) [19, 91], which we deem to be one for every forward pass
completed (for EBMs this is one function evaluation per optimization step). By scaling the number
of forward passes during inference, we can determine whether model performance improves with
increased thinking.

4.1 Autoregressive Language Modeling Experiments

In this section, we detail and discuss the results for all Natural Language Processing (NLP) experi-
ments using Autoregressive (AR) Language Models trained to predict the next discrete token in a text
sequence [82]. All language models are pretrained on the RedPajamaV2 text corpus [92, 93] 100B
sample from HuggingFace using the GPT-NeoX tokenizer [94] (following [22]) to predict the next
token. Following existing pretraining work, we compare AR EBT with the standard Transformer++
recipe [22, 87, 95]. We manually created a training and validation split of 66 million and 33 thousand
samples, respectively.

6Here, Autoregressive and Bidirectional refer to the procedure for generation. It’s worth noting that autore-
gressive models are compatible with bidirectional attention, as in [27].
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(a) Scaling for data. (b) Scaling for batch size. (c) Scaling for depth.

Figure 4: Language Learning Scalability—Data, Batch Size, and Depth. A comparison between
the scaling of the Transformer++ recipe [87] and EBTs across data, batch size, and depth during
pretraining. On all of these axes, EBTs out-scale the Transformer++ recipe significantly, indicating
improved data efficiency and suggesting potential benefits for generalization. Additionally, the
improved depth scaling offers promise for reasoning, where depth is crucial [96]. These results
suggest that if these scaling trends persist, EBTs would likely outperform Transformer++ models at
foundation model data scale.

For downstream evaluation, we used four key datasets in addition to the pretraining dataset, spanning
reasoning, question answering, and syntax understanding. Ordered roughly by increasing perplexity
difficulty, these include GSM8K [97], SQuAD [98], BigBench Elementary Math QA [99], and Big-
Bench Dyck Languages [99]. We intentionally design the evaluation towards reasoning benchmarks
due to their alignment with System 2 Thinking. Additionally, we focus on reporting perplexity as our
relatively small models trained from scratch, when compared to current foundation models, do not
achieve high accuracies on many of these benchmarks. Furthermore, perplexity often functions as
a more linear metric than accuracy [22, 100], enabling a more comparable analysis of downstream
performance as we scale compute during inference. Further details on the exact hyperparameters and
setup used for all experiments are in Section D.

4.1.1 Autoregressive Language Model Learning Scalability

The scaling trends related to the learning speed of models, commonly referred to as “scaling laws,”
are challenging to measure. For example, a recent survey [86] found that the “scaling laws” observed
often depend on several implementation details and axes to measure, which can result in several
different conclusions.7 Therefore, to be as comprehensive as possible in determining how EBTs scales
compared to the Transformer++, we conduct scaling experiments for six different axes–including
data, batch size, depth, parameters, FLOPs,8 and embedding dimension. The results for the data,
batch size, and depth scaling are shown in Figure 4; and the results for parameters, FLOPs, and
embedding dimension are visualized in Figure 5. Across all axes EBT consistently out-scales (has
a higher scaling rate) the Transformer++ recipe, becoming the first model to achieve such a feat
without using a different tokenizer ([101] was the first and only work to our knowledge to out-scale
the Transformer++ recipe, but they use a different tokenizer, and do not out-scale the Transformer++
across multiple axes unlike EBTs). These results suggest that EBTs are more data efficient, batch size
efficient, parameter efficient, depth efficient, and compute efficient than the Transformer++ recipe.
Thus, at the scale of modern foundation models trained on 1, 000× more data with models 1, 000×
larger (following [84]), we expect the pretraining performance of EBTs to be significantly better than
that of the Transformer++ recipe.

4.1.2 Autoregressive Language Model Thinking Scalability

Building on the learning results, we investigate EBTs for thinking at inference time. We found that
the thinking capabilities of EBT emerge with a sufficiently large data scale, and therefore, due to
limited resources, we focus on conducting thinking experiments with smaller models trained on
substantial amounts of data. We test thinking capabilities along two axes: thinking longer, which
denotes more optimization steps, and self-verification, which denotes generating many candidate
predictions and selecting the minimum energy prediction. In Table 2, we conduct ablation studies
to confirm the benefits of our energy landscape regularization techniques for System 2 Thinking

7For more information on this perspective please refer to Section D.1.1
8The FLOP calculation is nuanced and depends on specific hyperparameters. For more information please

refer to Section D.5.
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(a) Scaling for number of Parameters. (b) Scaling for number of FLOPs. (c) Scaling for the embed. dimension.

Figure 5: Language Learning Scalability—Parameters, FLOPs, and Width. Pretraining scaling
comparisons between the Transformer++ recipe [87] and EBTs across model size (parameters),
compute (FLOPs), and width (embedding dimension). EBTs slightly out-scale the Transformer++ in
FLOP and parameter scaling, becoming the first approach to achieve a higher scaling rate without
modifying the tokenizer [101] to our knowledge. These results suggest that EBTs offer high promise
as a pretraining paradigm in both parameter and FLOP efficiency as scale increases.

Table 2: System 2 Thinking Ablations. All energy landscape regularization techniques described
in Section 3.3 and their impact on System 2 Thinking performance, measured by percent perplex-
ity improvement. Thinking Longer denotes more optimization steps and Self-Verification denotes
optimizing many predictions and choosing the best. Bolded highlights the default System 2 Hyperpa-
rameters, leveraging all energy landscape regularization techniques described. This configuration
results in the best performance when thinking longer and doing self-verification. Removing regular-
ization, such as Langevin Dynamics, results in less energy landscape exploration, which improves
single path performance (thinking longer) at the expense of self-verification performance.

Model Thinking Longer ↑ Thinking Longer and Self-Verification ↑
No Random Step Size -1.47 0.19
No Random Num. Steps 0.00 9.65
No Langevin Dynamics 17.2 17.0
No Replay Buffer 14.8 17.8
Full System 2 Configuration 7.19 18.7

on Out-of-Distribution Data from the BigBench Dyck Languages benchmark [99]. We find that
using all techniques yields the best System 2 Thinking performance when combining extended
thinking and self-verification. Additionally, the results show that randomizing the step size is critical—
removing it nearly eliminates Thinking gains, while disabling Langevin Dynamics degrades combined
performance but improves results without verification, offering a performance-compute tradeoff.

Having established the importance of these landscape regularization techniques, in Figure 6, we
analyze the scalability of thinking with EBTs, where the results yield two main insights. First, as
shown in Figure 6a, EBTs are able to improve performance by as much as 29% by increasing the
amount of forward passes (thinking time), whereas the Transformer++ cannot improve performance
at all.9 This aligns with our claims that because traditional feed-forward Transformers cannot
dynamically allocate additional computation for each prediction being made, they are unable to
improve performance for each token by thinking for longer.

Second, as demonstrated in Figure 6b, the thinking capabilities of EBTs scale, showing that as EBTs
are trained for longer, their ability to achieve improvements from verification improves, increasing up
to 10%−14% from 4%−8%. This suggests that EBTs trained at the same scale as modern foundation
models, such as the 15T tokens Llama3 [84] was trained on (≈ 1000× the current data scale), would
have significantly more substantial results from self-verifying. Lastly, we visualize results from EBT
at representing uncertainty while predicting tokens in Figure 8. The results demonstrate that for easier
to predict tokens, such as “the” or “but”, EBTs optimize to lower energies faster, whereas for harder
to predict tokens, such as “fox” or “problem” EBTs have higher energy that does not converge across

9Because we pretrained language models from scratch, and are unable to train models the size of modern
foundation models, we find models did not benefit from inference time techniques such as Chain-of-Thought.
However, we expect both EBT and Transformer++ models to benefit equally from existing techniques.
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(a) OOD Thinking Performance Comparison. (b) Verification Capabilities as Scale Increases.

Figure 6: EBT Thinking Analysis. (a) Mean performance degradation of the standard Transformer++
recipe [87] and the Energy-Based Transformer (EBT) on four Out of Distribution (OOD) datasets.
While the Transformer++ cannot reduce perplexity at a per-token level, EBTs can by performing more
forward passes over a single token/sample (Thinking Longer) as well as generating many samples
and choosing the minimum energy one (Self-Verifying/BoN in addition to longer thought). (b) The
Self-Verification capabilities of EBTs using BoN-5 compared to not doing any self-verification. As
data scale increases, the benefit from doing self-verification increases. These results suggest EBTs
generalize OOD better than the Transformer++ because of their System 2 Thinking capabilities, and
that the thinking capabilities of EBTs scale during training.

steps. This suggests that during pretraining EBTs learn to capture uncertainty regarding which tokens
are harder or easier to predict, achieving Facet 2.

4.1.3 Autoregressive Language Model Generalization

Figure 7: OOD Thinking Performance. As the
data becomes more OOD, thinking leads to greater
performance improvements, with a roughly linear
trend. These findings highlight that EBTs thinking
is especially critical for robust generalization to
OOD data. Performance is measured on 5 differ-
ent datasets varying in Out-of-Distribution (OOD)
magnitude shift, which is measured as the ratio of
downstream dataset perplexity to pretraining per-
plexity. Max Thinking denotes combining thinking
longer and self-verification.

As System 2 Thinking in humans is associated
with generalization to novel scenarios, we con-
duct experiments directly aimed at measuring
the effects of System 2 Thinking on generaliza-
tion. In Figure 7, we visualize the performance
of EBTs on the datasets described, which have
varying levels of Out-of-Distribution (OOD)
shift (measured as the ratio of downstream task
perplexity to pretraining perplexity). We ob-
serve a strong linear trend: as the data becomes
more OOD, thinking leads to greater perfor-
mance improvements. Therefore, these findings
suggest that the benefits of EBTs’ thinking are
not uniform across all data but scale positively
with the magnitude of distributional shifts, high-
lighting thinking as a critical mechanism for
robust generalization beyond training distribu-
tions. These findings align with observations
in psychology where humans rely on deliberate
System 2 Thinking to tackle challenging OOD
tasks.

Next, we investigate the relation between OOD
generalization and pretraining performance. Pre-
training performance is strongly correlated with
downstream task performance in language mod-
els [102–104], and can even be a predictor of downstream performance [84, 105, 106]. Because we
know that EBTs scale at a faster rate than the Transformer++, as demonstrated in Figures 4 and 5,
it is reasonable to hypothesize that they may also perform better on downstream tasks at scale. To
investigate this, we compare models with identical training setups, where EBTs have slightly worse
pretraining perplexity than Transformer++ models. As shown in Table 3, despite achieving a higher
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Table 3: Language Model Task Generalization Comparison. Despite exhibiting a slightly higher
pretraining perplexity, EBTs usually achieve lower perplexity on downstream tasks than the Trans-
former++. This suggests that EBTs generalize better than the Transformer++. Additionally, because
EBTs scale better than the Transformer++ during pretraining (Figure 4), these findings suggest that
EBTs would outperform Transformer++ at foundation model scale. BB stands for BigBench.

Model Pretrain GSM8K ↓ SQuAD ↓ BB Math QA ↓ BB Dyck ↓

Transformer++ 31.36 49.6 52.3 79.8 131.5
EBT 33.43 43.3 53.1 72.6 125.3

Figure 8: Learning Uncertainty on Text Results. EBTs learn to vary uncertainty across text tokens
without any explicit supervision. As an example, in both (a) and (b), simple tokens such as “.”, “is”,
“a”, “but”, or “the” have lower energies across inference-time optimization (thinking) steps, indicating
lower uncertainty. On the other hand, harder to predict tokens such as “quick”, “brown”, “research”,
and “problem” have higher energies across optimization steps, and more difficulty in achieving energy
convergence, meaning the model is more uncertain. Inspired by [25].

pretraining perplexity, EBTs achieve lower (better) perplexity on most downstream tasks, suggesting
stronger generalization, particularly to Out-of-Distribution (OOD) data. Together, with the better
learning scalability results, and knowing that improved pretraining performance usually leads to
improved downstream task performance [84, 105, 106], these results suggest that at scale EBTs
would outperform the Transformer++.

4.2 Autoregressive Video Experiments

To assess how EBTs scale in continuous domains, we train models to predict the next image in a video
conditioned on all previous frames—a common pretraining objective for video models [107–111].
Unlike in the NLP experiments, where models see each sample only once due to the dataset size,
current popular video datasets are relatively small, requiring models to train repeatedly on the same
data. As a result, this setting probes a different question: “how well can models fit a fixed dataset?”
rather than how efficiently models scale under non-data-bound regimes. This distinction is especially
important given the recent scarcity of high-quality datasets [112, 113] and the perspective that data
will increasingly become a bottleneck.

For experiments, we encode all 224× 224 images into 3136 dimensional features with the frozen
SD-XL VAE [114, 115]. Then, all models are trained using a Smooth L1 loss with β = 1.0 on the
Something Something V2 dataset [116], where we report the minimum validation loss achieved.
In Figure 9 we report scaling results for the embedding dimension and non-embedding parameter
count, as we found these axes behaved the most linearly. The results demonstrate that, despite
achieving a higher initial loss, EBTs scale at a more than 33% faster rate than the Transformer++.
This suggests that at foundation model scale EBTs would achieve significantly better performance
than the Transformer++.

We believe this large scaling rate gap can be linked to the fact that EBTs more seamlessly model
continuous distributions than standard feed forward transformers due to being able to express
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(a) Scaling for the embedding dimension. (b) Scaling for the Non-Embedding Parameters.

Figure 9: Video Learning Scalability—Width and Parameters. The minimum validation loss
achieved on the Something Something V2 (SSV2) dataset. While EBTs achieve higher validation
loss than the Transformer++ at smaller scales, the scaling rate is more than 33% higher, suggesting
that at foundation model scale with hundreds of billions of parameters EBTs would perform much
better than the Transformer++. Notably, scaling with respect to the embedding dimension behaves
more linearly than for the number of parameters, likely due to the embedding dimension serving as a
bottleneck for the image representation.

Table 4: Image Denoising and Classification Comparison. For image denoising, EBTs significantly
outperform DiTs [26] in Peak Signal to Noise Ratio (PSNR), as well as MSE, on both in-distribution
and Out-Of-Distribution (OOD) data, while using 99% less forward passes. This suggests that EBTs
generalize better than DiTs while using less computation. On image classification, EBTs also perform
better than DiTs, yielding around 10× higher accuracy, suggesting that EBTs learn better image
representations and therefore understand images better than DiTs.

In Distribution Noise σ = 0.1 OOD Noise σ = 0.2 ImageNet-1k Classification

Model PSNR ↑ MSE Pixel ↓ PSNR ↑ MSE Pixel ↓ Top 1 Acc. ↑ Top 5 Acc. ↑
DiT 26.58 142.98 19.56 718.7 0.31% 1.36%
EBT 27.25 122.55 23.29 305.2 5.32% 13.2%

uncertainty (Facet 2) through their energy scalar. To confirm this, we visualize results for different
energies when predicting video frames in Figure 11. The results demonstrate that EBTs successfully
learn to capture uncertainty—where frames earlier on in the video have higher energy (higher
uncertainty) due to no large objects being within the frame, and then as the major object in the
scene becomes revealed more EBT predicts lower energy (lower uncertainty). EBTs learn to exhibit
this behavior without any supervision using a Smooth L1 loss, whereas the standard feed-forward
Transformer++ would require discretization schemes such as Vector Quantization [117] with a
categorical loss, or other tricks to achieve the same effect.

4.3 Bidirectional Image Experiments

In addition to investigating autoregressive EBTs, we also explore the performance of EBTs trained
bidirectionally. These experiments allow for a fairer comparison with diffusion models, which
are not commonly trained autoregressively. Following [48, 118], models are trained to denoise
images that have been noised. To make these denoising experiments compatible with diffusion
models, we deviate from the original noising schemes performed in these works and use a noising
scheme based on the noising schedule from diffusion models. Specifically, we follow [26], and use a
linear variance schedule ranging from 1 × 10−4 to 2 × 10−2. To control the noise level, we use a
hyperparameter denoted σ representing the percentage of the diffusion schedule to noise samples;
σ was set to 0.1 during training, and 0.2 during testing to test generalization. We use the COCO
2014 dataset [119, 120] with 128 by 128 images, a patch size of 16, and the Diffusion Transformer
implementation from [26].

Following [48, 118], during inference we investigate denoising on the same level of noise performed
during training (σ = 0.1), as well as at a higher noise level (σ = 0.2), representing Out-of-Distribution
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Figure 10: Qualitative OOD Image Denoising. EBTs achieve better denoising quality during
inference while using one step for every 100 denoising steps of a DiT. The overall image quality of
EBT denoised images is less blurry than images denoised by DiT.

(OOD) noisier images. The results are in Table 4, where we observe that EBTs perform better than
DiTs at both in and out of distribution image denoising across various metrics, by as much as 3.5
in Peak Signal to Noise Ratio (PSNR). Following [91], we also plot the performance based on the
number of forward passes (Number of Function Evaluations NFEs) in Figure 12. These results
demonstrate that EBTs perform better at denoising while using 99% less denoising steps than DiTs,
and that the System 2 Thinking scaling rate for EBTs is higher than for DiTs. Lastly, qualitative
results for denoised out-of-distribution images for EBT compared to the DiT baseline are shown in
Figure 10. These results further demonstrate that the visual quality of EBT denoised images is much
better than the visual quality of DiT denoised images, while using less compute.

Figure 11: Learning Uncertainty on Video Re-
sults. In line with cognitive Facet 2, EBTs learn
to express uncertainty across continuous video
frames without supervision. At the start of the
video, uncertainty is high (high energy) because
the frame is mostly empty and the scene is highly
unpredictable. As a blue garment is placed into the
frame, uncertainty decreases (low energy), reflect-
ing the greater predictability of the scene. When
the blue garment is removed from the scene, uncer-
tainty increases again, indicating a return to higher
unpredictability. Such a capability is significantly
more difficult to achieve in continuous spaces with
traditional feed-forward transformers without dis-
cretization schemes [121].

In an effort to understand whether the repre-
sentations learned from denoising captured use-
ful visual features, we perform a linear probe
evaluation on ImageNet-1k [122], following
common practice in visual representation learn-
ing [79, 80]. For both models, we take the aver-
age of all the final patch tokens, and for DiTs we
feed in T = 0. The results are shown in Table 4,
where the performance of EBTs is much higher
than DiTs, achieving a Top-1 and Top-5 accu-
racy around 10× higher than that of DiTs. This
suggests that EBTs learn better image represen-
tations than DiTs, and therefore that EBTs offer
promise in generative models with an improved
understanding of what they generate.

5 Discussion

Across both discrete (text) and continuous
(video) autoregressive models, the results show
that EBTs scale at a faster rate than the stan-
dard Transformer++ approach during pretrain-
ing across all measured axes, including data,
batch size, depth, parameters, FLOPs, and width.
This is especially apparent with data and batch
scaling for text, as well as width and param-
eter scaling for video, where the scaling rate
was over 30% higher. These results are particu-
larly important for two reasons: first, they sug-
gest that at the scale of modern foundation mod-
els, EBTs would outperform the current Trans-
former++ approach even without their System
2 Thinking capabilities. Second, EBTs appear
to be the first approach that has better data ef-
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ficiency than the Transformer++. As data has become one of the major limiting factors in further
scaling [123], this makes EBTs especially appealing.

With System 2 Thinking, the EBT-Transformer++ performance gap would be expected to increase, as
we found that System 2 Thinking could improve performance by as much as 29% for text (Figure 6a).
Further, we found that the thinking capabilities of EBTs scale well, as they improve during pretraining
(Figure 6b) and perform better for data that is more OOD (Figure 7). These findings imply that
OOD generalization benefits from System 2 Thinking will further increase at larger scales, paving
the way for principled generalization to OOD data. In addition, EBTs become increasingly robust to
self-generated errors during verification (Figure B.1a), indicating that their self-verification process
scales reliably and sidesteps the adversarial instabilities reported in prior works [19, 124].

Figure 12: Image Denoising Thinking Scala-
bility. A comparison between EBT and DiT on
image denoising given a different number of for-
ward passes. EBTs require only 1% of the forward
passes used by DiT to achieve comparable or better
PSNR. Further, the scaling rate of PSNR improve-
ment given more forward passes is much higher
for EBTs than it is for DiTs. These results suggest
EBTs have superior thinking capabilities than DiTs
on OOD data.

We hypothesize that the superior scaling of
EBTs compared to the Transformer++ can be
attributed to EBTs learning to verify (Facet 3)
rather than solely learning to predict. As dis-
cussed in Section 2, verification often general-
izes better than amortized generation, which we
believe leads to improved learning efficiency.
The results in our generalization experiments
further support this idea of verification leading
to improved generalization, as we found that
given a slightly worse pretraining performance,
EBTs still outperform the Transformer++ recipe
on downstream tasks. Additionally, correspond-
ing to Facet 2 regarding prediction uncertainty,
we find that the energy values learned by EBTs
correlate strongly with more challenging to pre-
dict data, as shown in Figures 8 and 11. This
is a promising characteristic of EBTs, as it en-
ables uncertainty estimation within continuous
state spaces, which would allow for principled
inference-time behavior adaptation (Facet 1)
when models determine a problem is more chal-
lenging.

Lastly, the results from our bidirectional experi-
ments indicate that EBTs hold strong promise in bidirectional modeling. Particularly, we find that
bidirectional EBTs outperform the DiT baseline in image denoising on both In and Out-of-Distribution
performance, while using significantly fewer forward passes. This suggests that EBTs offer promise
in tasks such as image generation or bidirectional text generation. Further, when evaluating the
representations from DiTs and EBTs, we find that EBTs perform significantly better, achieving up to
a 10× improvement in accuracy, suggesting EBTs offer promise in developing a better understanding
of what is being generated when performing generative modeling.

6 Related Work

6.1 Traditional Transformers

The Transformer architecture [83] has become ubiquitous across various domains [79, 82, 87, 125].
The most commonly used transformer variant of today makes predictions directly in the output space
with a single forward pass, demonstrated in Figure 1a. Because these models have a finite depth
and width, and make predictions in a single forward pass, they are unable to dynamically allocate
more computation to each prediction being made. Furthermore, they cannot model uncertainty in
continuous state spaces in the same way they can in discrete state spaces, because the normalization
process for continuous state spaces is not as well-defined as it is for discrete spaces using softmax [42].
Rather, training these models to express uncertainty relies on tricks such as Vector Quantization [34]
or pseudo losses/objectives (e.g., ELBO [35]). Finally, because these models are not trained to
explicitly verify samples, improving inference-time performance at a per-prediction level often
requires external models [50].
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6.2 RNNs

Recently, several RNN variants (Figure 1b) have emerged to alleviate memory bottlenecks and achieve
faster inference [22, 23]. These approaches have scaled similarly to Transformers in autoregressive
sequence modeling and achieve better memory efficiency and reduced latency. However, traditional
RNNs that update their internal state based solely on new information/data [22, 23] are not capable of
allocating additional computation during inference, and thus suffer from the same flaws as traditional
transformers in achieving human-like System 2 Thinking.

To resolve these issues, people have equipped RNNs with the ability to allocate computation dy-
namically, with architectures such as the Universal Transformer [126]. Recently, this type of RNN
has also been applied to LLMs [25, 127], allowing LLMs to reason using additional computation in
a continuous latent space through the depth of an unrolled RNN. However, like Diffusion models,
these models learn to amortize gradient prediction of the energy function [25], meaning they cannot
model uncertainty or explicitly verify predictions. Consequently, EBMs generalize these RNN-based
architectures by offering explicit prediction verification capabilities [19]. Further discussion on this
relationship is provided in Section E.

6.3 Dynamic Computation with LLMs

The ability to leverage a dynamic amount of computation in LLMs has been emulated using chain-of-
thought prompting [128] and continuous latent space reasoning [29]. While these approaches can
improve performance, they don’t seamlessly transfer to continuous modalities, and LLM chain-of-
thought has been shown to be unreliable for reasoning [129–131]. More recently, models have been
explicitly trained to perform reasoning using Reinforcement Learning [11–14]. These approaches
allow LLMs to simulate additional computational depth based on the number of tokens decoded
before making a prediction, and as a result, significantly improve performance [11, 12]. The main
limitations of these approaches are that they currently apply only to discrete domains (i.e., LLMs),
are effective on a narrow set of problems that are easily verifiable (e.g., math and coding), and require
additional supervision, typically in the form of reward signals, making them incompatible with purely
unsupervised pretraining [12].

6.4 Dynamic Computation with Diffusion

The most common instance of a model architecture specifically created to leverage dynamic computa-
tion is diffusion models (Figure 1c), where using multiple forward passes to generate a prediction
is a core aspect of both training and inference [114, 132]. Although diffusion models implicitly
define a likelihood through the reverse process [75], which could theoretically be used to verify
predictions, in practice an external verifier is necessary to improve performance at inference time
beyond increasing denoising steps [19–21]. This requirement limits the generalizability and scal-
ability of diffusion models as an approach for System 2 Thinking, as they do not have two of the
cognitive facets discussed in Table 1: the ability to model uncertainty in continuous state spaces and
the ability explicitly verify predictions without additional models [19–21]. Furthermore, diffusion
models rely on a fixed denoising schedule, which restricts their ability to adaptively halt or extend
computation—unlike EBMs. Additionally, diffusion models can be seen as predicting the gradient of
the data density/energy function [133], and therefore EBMs are a generalization of diffusion models
that learn to explicitly verify predictions. More on this connection is in Section E, and a side-by-side
comparison of diffusion models and EBMs is in Figure E.1.

6.5 Energy-Based Models (EBMs)

The perspective of energy minimization as thinking/reasoning has been known for some time [134].
Therefore, the most similar approaches to EBTs also train EBMs to do reasoning/thinking [48,
67]. While these works achieved impressive generalization results, they only focus on small-scale
problems, and did not scale EBMs to high-dimensional real-world problems such as language or
video. Additionally, these works did not perform an in-depth analysis on the types of System 2
Thinking that emerge with EBMs, more complex inference time procedures beyond just increasing
the number of gradient descent steps, approaches towards improving EBM scalability, and required
techniques for enhancing System 2 Thinking in EBMs.
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7 Limitations and Conclusion

In this work, we proposed Energy-Based Transformers (EBTs), a new paradigm that frames System 2
Thinking as an optimization procedure with respect to a learned verifier (an Energy-Based Model),
enabling System 2 Thinking to emerge across any problem or modality entirely from unsupervised
learning.

Limitations. Despite demonstrating strong performance, EBTs have several current limitations.
First, because EBTs generate predictions through an optimization process, they introduce additional
hyperparameters, such as the optimization step size and the number of optimization steps. Tuning
these hyperparameters is crucial for training stability, as we found poorly chosen values often lead to
unstable training. Second, training and inference are more computationally expensive than standard
feed-forward models, requiring additional gradient computations. Third, while EBTs scale well
up to 800M parameters, we have not explored larger models due to resource constraints. However,
experimental scaling trends demonstrate that EBTs scale faster than existing paradigms during
pretraining, suggesting that EBTs would perform better at foundation-model scale. Finally, EBTs
currently struggle with data distributions that have many modes, such as class conditional image
generation, likely due to the convex energy landscape assumption made during training.

Conclusion. EBTs are the first instance of an approach that scales at a faster rate than the Trans-
former++ during pretraining across both continuous and discrete modalities. Additionally, our results
suggest that EBTs scale better than existing approaches during inference at System 2 Thinking
by dynamically allocating computational resources and self-verifying their own predictions; these
System 2 Thinking capabilities enable improved generalization to out-of-distribution data. Ultimately,
the superior scaling in both training and inference, coupled with improved generalization, positions
EBTs as a promising new paradigm shift for advancing the intelligence of future foundation models.
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[143] Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at scale.
Advances in Neural Information Processing Systems, 37:30811–30849, 2024. 28

24

https://www.youtube.com/watch?v=6nJZopACRuQ&ab_channel=OpenAI


[144] Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: Llms can predict if
they can do better, even mid-generation. arXiv preprint arXiv:2410.02725, 2024. 30

[145] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can
be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024. 30

[146] Thomas Parr, Giovanni Pezzulo, and Karl J Friston. Active inference: the free energy principle in mind,
brain, and behavior. MIT Press, 2022. 30

[147] William A Falcon. Pytorch lightning. GitHub, 3, 2019. 33

[148] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit,
Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. Gpt-neox-20b: An open-source
autoregressive language model, 2022. 33, 35, 36

[149] Shengding Hu, Xin Liu, Xu Han, Xinrong Zhang, Chaoqun He, Weilin Zhao, Yankai Lin, Ning Ding,
Zebin Ou, Guoyang Zeng, et al. Predicting emergent abilities with infinite resolution evaluation. arXiv
preprint arXiv:2310.03262, 2023. 34

[150] Adam Casson. Transformer flops. 2023. URL https://adamcasson.com/posts/
transformer-flops. 35

[151] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
generation with composable diffusion models. In European Conference on Computer Vision, pages
423–439. Springer, 2022. 36

[152] Benjamin Hoover, Yuchen Liang, Bao Pham, Rameswar Panda, Hendrik Strobelt, Duen Horng Chau,
Mohammed Zaki, and Dmitry Krotov. Energy transformer. Advances in Neural Information Processing
Systems, 36, 2024. 38

[153] Yezhen Wang, Tong Che, Bo Li, Kaitao Song, Hengzhi Pei, Yoshua Bengio, and Dongsheng Li. Your
autoregressive generative model can be better if you treat it as an energy-based one. arXiv preprint
arXiv:2206.12840, 2022. 38

[154] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation,
23(7):1661–1674, 2011. 38, 40

[155] Angela D Friederici and Jürgen Weissenborn. Mapping sentence form onto meaning: The syntax–semantic
interface. Brain research, 1146:50–58, 2007. 38

[156] Seijin Kobayashi, Simon Schug, Yassir Akram, Florian Redhardt, Johannes von Oswald, Razvan Pascanu,
Guillaume Lajoie, and João Sacramento. When can transformers compositionally generalize in-context?
arXiv preprint arXiv:2407.12275, 2024. 38

[157] Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehensive
benchmark for open-world compositional text-to-image generation. Advances in Neural Information
Processing Systems, 36:78723–78747, 2023. 38

[158] John J Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the national academy of sciences, 79(8):2554–2558, 1982. 41

[159] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference Proceedings, 2010. 42

[160] Noam Shazeer. Glu variants improve transformer, 2020. 42

[161] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. 42

25

https://adamcasson.com/posts/transformer-flops
https://adamcasson.com/posts/transformer-flops


In this appendix, we provide additional insight and details on EBTs. First, we provide more insight
on the broader impact/future work of EBTs in Section A. Next, in Section B, we include additional
experiments. Then, we include additional approach details in Section C, as well as additional
experimental details in Section D. After that, we include a comprehensive related work in Section E,
additional facets of cognition in Section F, and a discussion of counterarguments in Section G. Finally,
in the hopes of making EBTs more accessible to general audiences, in Section H we contain a general
easier-to-understand intro to EBMs, and in Section I we describe a tutorial for getting started with
EBTs.

A Future Works and Broader Impact

EBTs, being qualitatively different from existing approaches, open several future research directions.

A.1 Reversal Curse

Recently, a phenomenon known as “The Reversal Curse” has been observed where LLMs fail to learn
a symmetric mapping [135] “B is A” despite learning “A is B”. For example, LLMs trained on an
example such as “Q: Who is Tom Cruise’s mother? A: Mary Lee Pfeiffer” often fail to generalize
to know the answer to the reverse question of “Who is Mary Lee Pfeiffer’s son?” Remarkably,
the Reversal Curse has manifested itself in LLMs regardless of the size or scale [135]—probing
researchers to investigate whether there are fundamental limitations to traditional feed-forward LLMs.
One predicted cause of The Reversal Curse is the nature of gradient updates, where backpropagation
only updates tokens within context. That is, while learning the mapping “A is B”, none of B’s tokens
are within context, meaning they do not receive gradient updates when updating A’s tokens. We
hypothesize that LLMs trained with EBTs rather than standard feed-forward Transformers could help
reduce this phenomenon, as with EBTs the tokens of A and B are within context during gradient
updates due to predictions being made in the input space. Therefore, an exciting research direction
would be investigating whether this hypothesis is correct in LLMs trained with EBTs, allowing
improved generalization.

A.2 Improved Stability

In this work, we primarily trained EBTs with either two or three optimization steps. While these
parameters worked well, we suspect that increasing the number of steps would improve the System
2 Thinking capabilities and the scaling during pretraining of EBTs, as more steps enable a longer
“thinking process” before needing to converge. However, because of challenges in stability when
training with more steps, due to a larger gradient computation graph, we were unable to successfully
increase past two or three steps. Future work could focus more on extending the number of steps by
studying ways to improve the training stability of EBMs.

A.3 World Models

In this work, we focus on autoregressive and bidirectional models over just state information (no
actions). EBTs offer high promise in modeling states and actions due to the nature of EBMs learning
a distribution over all possible inputs. Particularly, given a model trained to estimate the unnormalized
joint distribution of the current context, future, as well as future actions, such world models could
implicitly be used as policies to generate actions to achieve a specific state, similar to [136–138].
This would involve holding the current context (past states) constant, and minimizing the energy by
propagating the gradient back to the action inputs and future state predictions. Thus, world models
trained in this manner become capable of more than just predicting the future, but also in decision
making to achieve a specific goal state.

A.4 EBTs as Complementary Models

As demonstrated in [139, 140], EBMs can be used to improve the quality of generated text from
language models. It’s possible EBTs could be used in a similar manner for a broad variety of tasks,
serving as the verifier of predictions initialized by standard feed-forward models. Therefore, although
we do a side-by-side comparison to existing models in this work, EBTs could be complementary to
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existing model paradigms—being used as the System 2 Backbone for helping lighter models that
perform System 1 thinking.

There exist several current real-world use cases, such as low-latency LLM serving, where doing a
single forward pass is sufficient, and where the added inference overhead of gradients with EBTs
would not be worth the extra computation. However, we also envision a world in which people use
EBTs for long-term System 2 Thinking to solve challenging problems. How much computation
would it be worth dedicating to prove a long-standing mathematical conjecture, or figuring out a cure
to cancer?

A.5 Recurrent Energy-Based Models

While EBTs scale well, for latency-driven use cases, Transformers require significantly more memory
than Recurrent Neural Networks. Additionally, there is strong evidence for recurrence in the human
brain [141]. Therefore, we anticipate that recurrent Energy-Based Models, possibly leveraging the
Mamba architecture [22], will eventually become common.

A.6 Improved Thinking Algorithms

The EBM thinking algorithms described have strong connections to or are derived from Markov Chain
Monte Carlo (MCMC) sampling. Therefore, we broadly expect known MCMC samplers with more
advanced techniques for traversing the energy landscape to be successful, such as Hamiltonian Monte
Carlo [142] or annealed Langevin dynamics [51]. Additionally, we did not explore more advanced
search algorithms such as Monte Carlo Tree Search, which we suspect could offer performance
improvements and leave for future work.

A.7 Multimodal Energy-Based Models

We did not experiment with multimodal EBMs, however, EBMs offer several advantages for learning
over multiple modalities. For example, multimodal EBMs would enable a single energy scalar to
represent the alignment between modalities, and would simplify joint training across modalities by
providing a unified objective that naturally captures inter-modal dependencies.

A.8 Thinking Scalability

Due to a lack of computational resources, we were unable to train models with more than 1021 FLOPs
(≈ 1300 A100 GPU Hours). Therefore, training and thinking with EBTs remains untested at larger
foundation model scale. We leave it to future work to scale with more GPUs and investigate the
qualitative differences in training and thinking with EBTs.

A.9 Learning Multimodal Distributions

We found that EBTs, with the current training approach, struggle to capture distributions with many
modes (e.g., unconditional image generation). Therefore, future work could explore approaches to
improve the learning of distributions with many modes. More info is in Section B.2.

A.10 Understanding Predictions

We believe that there exists a fundamental distinction between the internal representations associated
with model inputs and outputs. Specifically, models generate internal representations of inputs, as
these serve as the foundation that dictate the model’s behavior at any given point in time. Conversely,
as outputs do not affect a model’s behavior at a given point in time, we contend that models construct
representations for predicting (and not necessarily understanding) outputs. This distinction leads us
to an interesting insight: models may not achieve a genuine understanding of outputs in the same way
they understand inputs. This implies that while models may develop an intricate understanding of
input data, such understanding does not naturally extend to predictions that are made in the output
space. Therefore, existing feed-forward models primarily making predictions in the output space
may not understand their predictions in the same way they understand their inputs. This intuition
further supports the principles behind EBT, where predictions are made in the input space, enabling
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(a) Self-verification with BoN-10 versus BoN-2. (b) Results in Fig. 6b projected to Llama3 scale [84].

Figure B.1: EBT Thinking Analysis for Data Scaling. (a) Self-verification of BoN-2 compared to
BoN-10. EBTs become less adversarial and thus benefit more from verifying an increasing number
of samples during training. (b) A projection of the results from Figure 6b to the data scale of
Llama3 [84], demonstrating that as data scale increases, improvements from self-verification can lead
to potentially massive performance increases from System 2 Thinking.

representations of predictions to be developed. We leave the investigation of this hypothesis to future
work.

B Additional Experimentation

B.1 Additional Natural Language Processing Experiments

We conduct experiments to confirm hypotheses on thinking results obtained in the main paper. First,
we confirm that EBTs become less adversarial with scale by comparing the performance of using
BoN with 2 versus 10 samples. The results in Figure B.1a demonstrate that when models are trained
on less tokens, there is little performance improvement by verifying 10 samples instead of just 2.
In fact, verifying 10 samples occasionally leads to worse performance than verifying 2 samples,
likely because the EBT found an adversarial sample (a sample with low energy that is in fact not a
good prediction). However, as data scale increases we observe that performance improvements from
BoN-10 versus BoN-2 increase, and that these adversarial dynamics decrease. Together, these results
suggest that with scale EBTs become less adversarial due to an improved energy landscape. In an
effort to understand the impacts of thinking at the scale of modern foundation models, we project
results from Figure 6b to the scale of modern foundation models [84] to extrapolate a projected
performance gain from self-verification based thinking. The results are visualized in Figure B.1b,
where they demonstrate that, because of the 1000× data scale of modern foundation models, the
performance improvement from self-verification increases drastically.

Additionally, in an effort to understand whether EBTs can capture epistemic uncertainty (uncertainty
related to knowledge), in addition to aleatoric uncertainty (uncertainty related to inherent data
randomness), we visualize the energies of different token sequences that are in versus Out-Of-
Distribution (OOD) in Figure B.2. The results demonstrate that, for a more in-distribution sequence,
EBTs have lower energy (less uncertainty), than for an OOD sequence. This suggests that EBTs learn
to know what they don’t know, as they learn to have higher energy for OOD sequences signifying
harder predictability.

To confirm some of the scaling trends in the paper, as well as experiment with additional datasets,
we conduct larger-scale experiments on the FineWeb dataset [143]. Particularly, for Figure 4a, we
confirm that the generally better data scaling of EBTs compared to the Transformer++ holds at
increased scale. We confirm this by training small-sized models with a batch size of 256, a context
length of 1024, and for 500, 000 training steps. These results are visualized in Figure B.3, where we
observe that EBTs still continue to outscale the Transformer++ by as much as 35% in scaling rate.
These results further reinforce that EBTs are more data-efficient than the Transformer++.
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Figure B.2: Epistemic Uncertainty Comparison. EBTs learn to express epistemic uncertainty
(uncertainty related to lack of knowledge) on unseen data. Particularly, the sequence on the left,
which is a text sequence likely seen during training, has consistently lower energy (uncertainty)
for tokens than the sequence on the right, which is a random text sequence not from the training
distribution. This demonstrates that EBTs learn to “know what they don’t know.”

(a) Data Scaling Higher Scale. (b) Data Scaling Zoomed In.

Figure B.3: EBT Larger Scale Data Scaling. (a) Data scaling results from Figure 4a scaled up to a
larger model size, higher context length, increased batch size, and a higher number of training steps.
(b) Results from (a) zoomed in.

B.2 EBT Failure Cases

During experimentation, along with image denoising experiments, we also conducted small-scale
experiments with text-to-image generation. We found that, in datasets such as COCO with many
different modes for a single condition (e.g., hundreds of images with a caption similar to “giraffe with
a long neck”), that EBTs did not learn to generate high-quality novel images. Instead, EBTs often
generated blurred images similar to the training distribution. We believe this is caused by the training
approach pushing the energy landscape to be convex surrounding the training examples (modes).
Therefore, when there are many different modes within the same region (same condition), this
convex energy landscape “merges” to one landscape averaged around the different modes, resulting
in blurriness. We believe that this is not a fundamental limitation of EBTs, and that future work could
address this issue, such as by adding more conditioning.
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C Additional EBT Details

C.1 Formalizing Thinking

Due to the recent surge of interest in scaling the performance of models during inference/test time,
there are several common terms used to refer to these ideas. These terms include scaling the thinking
capabilities of models [11], inference-time scaling [19], inference-time compute [144], and test-time
compute [11, 145]. Therefore, to reduce confusion stemming from a wide variety of terminology and
unite the community, in this work we broadly define these concepts as System Two Thinking or
more concisely Thinking. We formalize improvements made by Thinking as the following:

Definition C.1 (System 2 Thinking). Given a problem with data x, a model θ, and additional
computational resources in the form of function evaluations F greater than the minimum number
of function evaluations to get a valid prediction from the model F0, System Two Thinking STT(·)
quantifies the expected percentage improvement in performance as F increases. Let P (x, θ, F ) be
the performance on input x when the model θ uses F function evaluations:

STT(x, θ, F ) = Ex

[
P (x, θ, F )

P (x, θ, F0)
− 1

]
,

This formalization is compatible with any type of metric (e.g., Accuracy, Perplexity, FID, etc),
and uses more psychology-aligned terminology [1]. Further, avoiding terms such as “inference”
or “test-time” makes the idea of Thinking more compatible with domains where the line between
inference and training is blurry, such as real-world continual learning, domain adaptation, or actual
human learning/thinking processes [146]. Just as learning has become a flexible term across machine
learning representing several different ideas, we intend for thinking to similarly unify many diverse
ideas under a common framework. For a greater justification on this perspective, please see Section G

C.2 Energy-Based Transformer (EBT) Thinking Types

All experiments in the paper are conducted with two main variants of EBTs, which we call System 1
(S1) and System 2 (S2) EBTs. S1-EBTs have hyperparameters specifically optimized for stability
and learning convergence, whereas S2-EBTs have hyperparameters optimized for System 2 Thinking
capabilities. Many of the pretraining scaling experiments conducted in Section 4 are with S1 models
as to reduce the computational resources required for experimentation. To confirm that these results
hold for S2 models, we plot the scaling trends of S1 and S2 models side by side; in Figure C.1, we find
that S2 models scale at the same or a higher rate than S1 models during training, but have a higher
Y-intercept. This Y-intercept offset does not affect asymptotic scaling behavior (as asymptotically
the scaling rate dominates), and hence, scaling trends that hold for S1 models should generally
hold for S2 models. In fact, S2 models may even perform better than S1 models during pretraining
asymptotically because of the higher scaling rate. Intuitively, switching from S1 to S2 models allows
for a compute trade-off between the model’s pretraining performance and the model’s System 2
Thinking capabilities.

S1 models have the gradient of predictions detached between optimization steps to increase training
stability. Conversely, following [67], the S2 models truncate backpropagation and avoid detaching
prediction tensors between optimization steps. Additionally, the S2 models have all the energy
landscape regularization techniques described in Section 3.3, whereas the S1 models have none. We
also find that S2 models require a different value for the optimization step size, that the optimization
step size not be learned, and to perform a minimum number of optimization steps greater than one.

C.3 Autoregressive Causal Energy-Based Transformers Efficient Implementation

GPT-style decoder-only autoregressive Transformers are parallelizable due to making all next-state
predictions simultaneously [82]. In this section, we detail the implementation of decoder-only
autoregressive EBTs, which also parallelize all next-state predictions simultaneously, but involve
more complexity due to EBMs making predictions in the input space rather than the output space.10

10For simplicity we often use the term matrix to refer to slices of tensors.
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Figure C.1: EBT S1 and S2 Scaling Comparison. Scaling rate of System 1 (S1) compared to System
2 (S2) models. System 2 models have a higher Y-intercept but scale slightly faster than System 1
models. Therefore, as the scaling rate ultimately dominates asymptotic scaling behavior, and not the
Y-intercept, scaling results in the main paper that hold for S1 models should generally hold for S2
models.

To demonstrate why this poses a challenge, for the decoder-only autoregressive Transformer, consider
the case of the N ×N attention scores matrix after the causal mask has been applied:

scores =

αz1,z1 0 . . . 0
αz2,z1 αz2,z2 . . . 0
. . . . . . . . . . . .

αzn,z1 αzn,z2 . . . αzn,zn

 ,

where αzi,zj represents the attention score (probability mass) from observed state zi to observed
state zj . Now, in the case of an EBM, where predictions are made in the input space, the desired
N × (N + 1) attention scores matrix would look like the following:

scores =

αz1,z1 αz1,ẑ2 0 . . . 0
αz2,z1 αz2,z2 αz2,ẑ3 . . . 0
. . . . . . . . . . . . . . .

αzn,z1 αzn,z2 αzn,z3 . . . αzn,ẑn+1

 , (3)

where ẑj denotes a predicted state (as opposed to an observed state). This is challenging to compute
because each ẑj along the superdiagonal is unique for its row, as we chose for each prediction to
be made independently from each other prediction.11 Consequently, unlike standard attention in
feed-forward Transformers, this attention matrix cannot be computed with a matrix multiplication
(softmax

(
QKT

√
dk

)
), as every element of the superdiagonal is a prediction and not an observed state.

Additionally, in traditional transformers, if the context length is N , the size of manipulated tensors
will generally be B×N ×D where B is the batch size and D is the embedding dimension. However,
because EBMs make predictions in the input space, the input tensor needs to be different to allow
for inputting predictions. Therefore, to distinguish these tensors, for a context length of N tokens
(meaning we are given N tokens), we define a sequence of the first N elements as zo, or the observed
sequence representations, and the final N elements as zp, or the predicted representations (for each
next element in the sequence). This means that the manipulated tensors within the EBT are of size
B × 2N ×D for a context length of size N .

The values for zo, or the observed states, are computed identically as in the original transformer [83],
as the attention scores of the observed states do not depend on the predicted states. This can be
formalized as the following:

Attention(Qo,Ko, Vo)zo = softmax
(
QoK

T
o√

dk

)
Vo,

11We note that it’s possible to make each prediction not be independent, however, not making every prediction
independent would mean that there is stochasticity for each prediction caused not only by its initial value but
also by all initial values of all previous predictions.
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where Qo, Ko, and Vo are the Query, Key, and Value matrices of the observed states zo. In every
block of the transformer, the representations of all observed states are updated in this manner,
independent of the representations of the predictions.

For the computation of prediction representations, three matrices are computed, which we notate as
Qp, Kp, and Vp.12 First, we compute the self-attention scores of all predicted representations to all
observed representations:

S̃zo←zp =
QpK

T
o√

dk
,

where S̃zo←zp denotes the raw unnormalized attention scores of the predicted states to the observed
states. Note, however, that the self-attention scores of each prediction with itself have not yet been
calculated—due to the key matrix being from the observed states. Therefore, the superdiagonal of the
S̃zo←zp matrix needs to be replaced with the self-attention scores of each prediction with itself to
achieve the attention score matrix shown in Equation 3.

To achieve this matrix, we first need to append a column to the right side of the S̃zo←zp matrix,
as the size of the matrix is currently N × N , but the matrix needs to be N × (N + 1) (N for the
observed states and then one for the predicted states along the second dimension). After doing this,
we first mask out the superdiagonal with zeros to ensure that the probabilities in the superdiagonal of
the score matrix only correspond to the values of predicted states with themselves. To make this
operation differentiable, this masking operation is done through elementwise multiplication of a
matrix with ones everywhere except the superdiagonal, which has zeros. Then, we compute the
self-attention scores of each predicted state with itself, using the following equation:

S̃zp←zp =
sum(Qp ∗Kp)√

dk
,

where the ∗ indicates the Hadamard product and the sum is across the feature dimension. Using
a superdiagonal mask again, we set the diagonal of the S̃zo←zp to these values. We denote the
updated matrix as S̃zp , representing that this matrix is still unnormalized scores but takes into ac-
count interaction between zp and zo as well as from zp to themselves. Now, after applying the softmax:

Szp = softmax
(
S̃zp

)
,

we have the intended scores matrix shown in Equation 3. Note that for this softmax operation we
adjust the standard causal attention mask to ensure all future information is masked out and the
superdiagonal we added is not masked out.

One more barrier towards finally extracting all updated zp representations is the fact that we cannot
simply multiply this resulting scores matrix by the values matrix, as each element of the superdiagonal
corresponds to a different predicted state. Thus, using similar techniques to before, we first clone and
then extract the superdiagonal from this scores matrix using a diagonal mask.

After extracting out the superdiagonal, zeroing it out after extraction, and removing the earlier
appended right-most column, we can multiply the resulting scores matrix by the Vo matrix to get
all of the representations summed together of each predicted state with all observed states. This is
computed using the following matrix multiplication:

zp = Szp · Vo.

As we also need to add the representation of each predicted state weighted with its own attention
score (what was extracted on the superdiagonal), we perform another Hadamard product of the Vp

matrix with the cloned superdiagonal to get these values, and then add these element wise to the zp
representations. Now, we have computed the intended representations involving the scores matrix
shown in Equation 3. Now, zo and zp are updated by multiplying these tensors by the shared output
weight matrix Wo.

12In practice, we shared the weights for the Q/K/V matrices for both observations and predictions to enable
a one-to-one comparison to existing feed-forward transformers. It would be interesting to experiment with
using different weight matrices to determine if that improves convergence and generalization at the cost of more
parameters.
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Table D.1: Model sizes and hyperparameters for scaling experiments. For applicable model sizes
we follow Mamba [22].

Size Non-Embedding Params # layers embed. dim # heads

xxs 6.18M 6 384 6
xs 12.4M 12 384 6
small 48.8M 12 768 12
medium 176M 24 1024 16
large 396M 24 1536 16
xl 708M 24 2048 32

Table D.2: Hyperparameters for Transformer++.

Hyperparameter CV NLP
Optimizer AdamW
Optimizer Momentum β1, β2 = 0.9, 0.999
LR Schedule Linear warm up cosine decay
Warmup steps 1e4
Minimum LR Scale 10
Gradient Clip Value 1
Weight Decay 0.01
Context Length 16 256
Encoder SD-XL VAE [114, 115] -
Image Dimension 224x224 -
Tokenizer - EleutherAI/gpt-neox-20b [148]
Vocab Size - 50277

C.4 Autoregressive Energy-Based Transformers Simplified Implementation

A more simplified implementation involves the entire attention matrices and a generalized causal
mask, as described in [28]. However, because this implementation involves a matrix multiplication
with 2 times the sequence length, this results in 4 times the number of FLOPs as normal attention,
which is around double the number of FLOPs of our more efficient implementation.

D Experimentation Details

Tables D.2 and D.3 specify general model information and hyperparameters. We utilized the Llama 2
transformer implementation [87] for the Transformer++ and used this implementation as the backbone
upon which we built causal decoder-only EBTs. We seed all libraries using PyTorch Lightning [147]
for all experiments with a seed of 33. For the Diffusion Transformer, we use the implementation
from [26]—for the bidirectional EBT we build upon this implementation.

Unless otherwise stated, for all scaling experiments we copy the popular Mamba paper pretraining set-
tings for the model configuration (we use different batch sizes/data due to computational constraints),
shown in Table D.1. Because we are compute-constrained, we also include two extra model sizes in
this table, extra extra small (xxs) and extra small (xs), which allow us to collect more data points
for the extrapolation of scaling trends. Because the hyperparameters used in these experiments were
tuned for feed-forward Transformers in [85], we broadly expect that hyperparameters tuned for EBTs
will further increase the performance gap between EBTs and the Transformer++ in autoregressive
modeling. Future research should investigate the optimal width/depth/batch sizes for EBTs.

D.1 Autoregressive Language Modeling Experimental Details

D.1.1 Autoregressive Language Modeling Learning Scalability Details

Conducting thorough scaling experiments is extremely challenging—a recent survey on “scaling
laws” [86] showed just how fragile many of these “scaling laws” are to hyperparameters, data, and
other parameters, and how changing these variables slightly can lead to vastly different conclusions.
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Being bottlenecked by a limited set of computing resources further exacerbates the issue of comparing
two models. Therefore, we sought out to conduct controlled experiments that revealed the most
information possible regarding the scaling of EBTs compared to different models.

Most existing works study scaling by varying several factors simultaneously, including depth (number
of transformer blocks) [85], width (embedding dimension) [85], possibly batch size [105, 149], and
the amount of data [85]. Therefore, to be more comprehensive in determining when EBTs scale
differently than the Transformer++, we decided to conduct normal scaling experiments over all of
these factors at the exact same time (as is standard), as well as ablating over changing just one of
these factors at a time. Notably, conducting experiments in this manner allows for controlling a single
independent variable at a time (i.e., just changing the number of Transformer Blocks), which allows
for stronger conclusions regarding what aspects of model scaling different models perform better over
(i.e., EBTs scale better then the Transformer++ when increasing the number of Transformer Blocks).
Scaling all factors at once does not allow for such insight, as there are many independent variables
changing at once. We believe experiments that involve changing a single independent variable are in
broader alignment with traditional scientific principles.

For the parameter and FLOP scalability experiments, all models are pretrained for 105k steps. For
each model size, following [105, 149], we scale the batch size. For NLP experiments we use the
following batch sizes for the xxs, xs, small, medium, and large models respectively: 32, 46, 90, 170,
and 256. These batch sizes were determined by scaling the batch size with the square root of the
number of parameters and then rounding to an even number, similar to batch size trends in [149]. All
model sizes use the same learning rate as in the Mamba paper [22] (0.0006, 0.0003, 0.00025, and
0.0002 for small, medium, large, and xl models respectively), where for the xxs and xs models we
use a learning rate of 0.0012 and 0.0009 respectively. For the data scaling and batch size scaling
experiments conducted in Figure 4, we use xxs models (we also report small models in Section B).
The data scaling experiment used a batch size of 128 and the batch size experiments ran for 105k
steps. All models were trained with a context length of 256 and no FFN multiplier (FFN dimension
being equal to the embedding dimension) due to limited resources.

D.1.2 Autoregressive Language Modeling Thinking Scalability Details

We train xxs S2-EBT and Transformer++ models with the same setup as above, with the exception
that models are trained with a batch size of 128 for 1M training steps (Table D.4 contains more
hyperparameter details). Increasing the data scale enables us to better understand how thinking scales
during pretraining. It’s worth noting that since we are training small language models, they could
not benefit from modern techniques such as Chain of Thought (CoT) in improving performance.
Figures 6, B.1, 7 and Table 3 use the best checkpoints of these two models. Figures 6a, 7 both use all
four downstream datasets shown in Table 3. Figure 7 also uses the pretraining dataset in addition to
these downstream datasets, where every dataset is represented as a separate OOD point.

Figure 6b was solely from the Dyck Languages benchmark. We did not observe this trend in other
benchmarks, possibly due to perplexity not being a completely linear metric. Figure B.1a was on the
RedPajamaV2 validation dataset.

D.2 Autoregressive Video Experimental Details

We use the same model parameter scaling, shown in Table D.1, as the NLP experiments. We also
used a batch size of 256 for all models, as we found that it did not affect the scaling performance due
to models training for many epochs. We also processed videos with 0.25 seconds between frames.
For the Transformer++ baseline, we use the same learning rates as the NLP experiments. For EBTs,
we found that it was necessary to use a lower learning rate by a factor of 3 for proper training stability.
We use the standard SSV2 train and validation split for experiments. Other hyperparameters are
shown in Figure D.2 and Figure D.3.

D.3 Bidirectional Image Denoising Experimental Details

We use the COCO 2014 dataset [119, 120] with 128 by 128 images, its train/validation split, a patch
size of 16, and the Diffusion Transformer implementation from [26]. All models were trained using
the large model size described in Table D.1, with a learning rate of 1e − 4 for 100, 000 steps. For
the DiT baseline, we used the same hyperparameters from [26], changing only the batch size to
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Table D.3: Hyperparameters for EBT scaling experiments.

Hyperparameter CV NLP
Optimizer AdamW
Optimizer Momentum β1, β2 = 0.9, 0.999
LR Schedule Linear warm up cosine decay
Warmup Steps 1e4
Minimum LR Scale 10
Gradient Clip Value 1
Weight Decay 0.01
Context Length 16 256
Encoder SD-XL VAE [114, 115] -
Image Dimension 224x224 -
Tokenizer - EleutherAI/gpt-neox-20b [148]
Vocab Size - 50277
Normalize Input Distribution - ✓
Optimization Steps 2 2
Optimization Step Size 30, 000 500
Optimization Step Size LR Multiplier 90, 000 1, 500
Learnable Optimization Step Size ✓

128 from 256. We based our bidirectional EBT implementation on the code from this repository.
We experimented with several different diffusion inference strategies to ensure a fair comparison,
including DDPM, DDIM, increasing the number of diffusion steps at inference, and recursively
applying the diffusion model on its own denoised output.13 Ultimately, we found that the combination
of DDIM recursively applied on its own output performed best, hence we used this as the baseline in
all experiments. We used the default denoising schedule from the DiT codebase [26].

For both DiTs and EBTs, we found that models performed best on OOD noise levels when denoising
their own outputs twice, that is applying the model to denoise the image three times recursively. This
is how we are able to achieve the results in Figure 12 demonstrating the performance for 300 forward
passes from DiTs and 3 forward passes from EBTs. We found that for image denoising, it was not
necessary to train EBTs with the S2 hyperparameters for System 2 Capabilities to emerge, although
its possible these would further improve performance. Additionally, for image classification, for both
models, we take the average of all the final patch tokens, and for DiTs we feed in T = 0.

D.4 Computational Resources

All experiments were conducted on either Nvidia A100s, H100s or GH200s, with the largest scale
experiment requiring approximately ≈ 1300 A100 GPU Hours. The runtime for each experiment
was dependent on the model sizes used as well as the amount of data trained on.

D.5 FLOP Calculations

We adopt the standard estimate of 6N FLOPs per token for the AR Transformer++ [150], where N
denotes the number of non-embedding parameters. For AR EBTs, however, the per-token cost varies
with the number of training optimization steps and chosen hyperparameters.

To derive the FLOPs for EBT training, we follow [76] for the Hessian-vector product (HVP), which
EBTs require to backpropagate through a first-order derivative. Since an HVP has the same theoretical
complexity as a gradient computation, we express the per-step FLOPs as

FLOPs = F +B +B.

Based on [150], the forward and backward passes require approximately 2N and 4N FLOPs per
token, respectively, where N denotes the count of non-embedding parameters in the Transformer.
In the autoregressive EBT implementation, the effective sequence length becomes twice that of the
original Transformer (formally 2S − 2 for an original sequence length S). Owing to the efficient
scheme of Section C.3, this doubling of sequence length translates roughly into a two-fold increase

13This recursive application was only performed during testing due to the distribution shift.
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Table D.4: Hyperparameters for EBT System 2 Thinking experiments.

Hyperparameter NLP

Optimizer AdamW
Optimizer Momentum (β1, β2) 0.9, 0.999
Model Size Small
Learning Rate (LR) 0.0012
Learning Rate (LR) Schedule Linear warm-up + cosine decay
Warmup Steps 1× 104

Minimum LR Scale 10
Gradient Clip Value 1
Weight Decay 0.01
Context Length 256
Tokenizer EleutherAI/gpt-neox-20b [148]
Vocab Size 50,277
Normalize Input Distribution ✓
Optimization Steps 2-3 (randomized)
Optimization Step Size 5
Optimization Step Size Multiplicative Random Factor 2
Langevin Dynamics Noise 3
Learnable Optimization Step Size ✗
No Detach Between Optimization Steps ✓
Truncate Optimization ✓
Replay Buffer ✓

in FLOPs, rather than a four-fold increase in FLOPs. Hence, each second-order optimization step
demands roughly

(F +B +B)× 2 = (2N + 4N + 4N)× 2 = 10N × 2,

making it ≈ 3.33× more expensive than a standard feed-forward Transformer step.

The overall FLOP count also depends on one’s choice of hyperparameters. For S1 models, where the
loss is evaluated at every iteration without gradient truncation, the total FLOPs simply multiply by
the number of steps. Therefore, for our pretraining experiments using two optimization steps, we get
that EBTs used 6.66× the FLOPs of a comparable Transformer++ during training. In contrast, for S2
models, a random number of optimization steps is used, the gradient is truncated, the loss is only
calculated at the last step following [48], and a Replay Buffer is used. Therefore, the FLOP count
varies and can both decrease (as truncating uses less FLOPs for earlier steps) as well as increase
(as using more steps and a replay buffer both use more FLOPs). These numbers also vary during
inference, where the full EBT implementation parallelizing all predictions at once is not necessary.

Given the scarcity of published methods for computing higher-order derivative FLOPs and our
inability to leverage existing libraries for Hessian-vector products, these estimates remain approximate.
We welcome corrections or additional insights from readers familiar with FLOP calculations for
second-order methods.

E Additional Related Works

E.1 Energy-Based Models (EBMs) as a Generalization of Diffusion Models and Recurrent
Depth Models

Both diffusion models [133] and RNNs [127] can be seen as predicting the score, or the gradient
of the energy function/data density, ∇xEθ(x), where diffusion models do this with an additional
time condition [151]. Thus, the largest benefit of explicit EBMs over these approaches, which can be
seen as implicit EBMs (due to only implicitly defining an energy function), is that using an explicit
EBM allows for explicit verification/likelihood modeling. We show that this enables the use of
self-verification to improve predictions, whereas with diffusion models and RNNs an additional
verifier model is necessary to achieve this capability [19].
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(a) Diffusion Model (b) Energy-Based Model (EBM)

Figure E.1: EBM and Diffusion Comparison. Diffusion models receive supervision at each step
of the denoising process (e.g., for one thousand steps), whereas EBMs only receive supervision
at the end of the optimization process. This training procedure allows EBMs to learn an entire
Energy Landscape over predictions, associating a scalar energy for every prediction according to
its likelihood. Learning landscapes in this manner can reduce “error” accumulation throughout
the denoising process [67] and makes EBMs more flexible by allowing unnormalized likelihood
estimation at each step of the denoising process. Additionally, diffusion models update predictions
by predicting the noise at each timestep, meaning they must follow a set denoising schedule. On
the other hand, EBMs update predictions by performing gradient descent with respect to the energy
scalar, allowing for flexible inference where this optimization process can be performed for any
number of steps. x here refers to some condition (e.g., a class or text) whereas y is the generated
prediction.

It’s also worth noting that RNN, diffusion models, and EBMs need not be incompatible with one
another. For example, [67] combines EBMs and diffusion to reason over challenging problems. This
can increase stability of the learned energy landscape by adding explicit score supervision.

E.2 In Depth EBM and Diffusion Model Comparison

Because of the similarity of diffusion models and EBMs, we present a side-by-side comparison of
the training and inference approach for both in Figure E.1, where the primary difference lie in the
supervision they receive during training and the update rule for predictions. Additionally, we provide
more information to compare these approaches.

Under the assumption that the energy landscape is well formed and that optimization is well behaved,
EBMs offer several distinct advantages over diffusion models. In EBMs, the energy function is
trained to represent a meaningful landscape where the energy value of a sample directly corresponds
to its relative unnormalized likelihood. Consequently, two samples can be directly compared to
determine which is more likely, in a single forward pass. On the other hand, diffusion models require
running samples through the entire reverse diffusion process to get likelihoods, which often requires
hundreds to thousands of steps, and rely on likelihood approximations such as ELBOs or numerical
solvers for SDEs/ODEs. In practice, these result in incomparable likelihoods, as ELBOs only give
likelihood lower bounds and numerical solvers result in high approximation error [19].

Furthermore, the learning of an energy landscape over predictions means that any approximation
errors at each individual step of the Markov Chain (optimization process) do not result in cumulative
error, as the minimum of the energy landscape can still be reached. This differs from diffusion models,
where any approximation error at each step will result in increasing accumulated error across the
entire Markov Chain [67] (demonstrated in Figure E.1).

Lastly, EBMs, giving an unnormalized likelihood estimate at each step, are in practice much more
flexible for generation than diffusion models. While diffusion models require running the entire
reverse diffusion process with a specific denoising schedule to generate a sample, EBMs can be
trained to directly predict the next sample in a single step, and give an unnormalized likelihood at
each step indicating how likely they think this sample is. This better approximates human-like System
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2 thinking, where humans naturally evaluate the strength of current predictions, and on the basis of
knowing how good their predictions are, decide to dynamically allocate more or less computational
resources.

E.3 Additional Energy-Based Models Related Works

One contribution of this work was the design of a custom architecture for EBMs called the Energy-
Based Transformer (EBT). Roughly similar in naming is the work of the Energy Transformer [152].
However, despite similarity in the names of these architectures, they are very different—with the
primary similarity in architectures being the usage of attention mechanisms as well as a global
energy function. The existing work integrated ideas from Modern Hopfield Networks, including
RNNs, whereas in our work the architecture is non-recurrent and does not use associative memories.
Additionally, in this work with EBTs we focused on System 2 Thinking and scalability to high-
dimensional problems, which the previous work did not experiment with.

Other loosely related approaches to EBTs involve autoregressive Energy-Based Models, including
E-ARM [153], EBR [140], and Residual EBMs [139]. E-ARM involves adding an objective to the
learning process to turn a traditional autoregressive model into an EBM, and as such does not achieve
two of the cognitive facets discussed in Section 1. EBR and Residual EBMs involve the training of an
EBM on top of an already pretrained autoregressive language model. Both works, however, leverage
a contrastive objective, which suffers from the curse of dimensionality.

The optimization procedure used to train EBTs can be seen as a form of denoising score matching [71,
154]. Particularly, EBTs having predictions initialized at some Gaussian, and then optimizing
predictions using the gradient of the energy function, can be seen as training EBMs to denoise by
learning the score of the data starting from a Gaussian prior. However, we find the optimization
perspective is more intuitive, and this denoising score matching perspective is more similar to the
diffusion model training procedure than it is EBMs, involving multiple levels of noise rather than just
one level.

F Additional Cognitive Facets

In this section, we describe in more detail the different facets of cognition, in addition to introducing
additional facets.

Facet 1, Dynamic Allocation of Computation, can be formalized as Turing completeness (assuming
an infinite length external memory). Because standard feed-forward Transformers have finite length
programs (i.e., they have finite depth), they are unable to be Turing complete at the granularity of
each prediction being made. This also holds for common RNN variants that are only updated with
new sequence information. Diffusion models and EBMs, being able to iteratively compute functions,
have potentially infinite length programs, and therefore when augmented with an infinite external
memory can be Turing complete.

Facet 4: Compositional Reasoning and Systematicity. Humans routinely solve novel tasks by
recombining familiar primitives (e.g., verbs with new arguments or visual parts into unseen objects),
a hallmark of compositional generalization well-documented in neuroscience [155]. In contrast,
state-of-the-art Transformers and diffusion models often fall short when evaluated on compositional
generalization [156, 157]. Energy-Based Models (EBMs) seamlessly address these limitations:
energies for individual factors are composable in several different manners [133], enabling zero-
shot generation of novel combinations without retraining, where gradient-based sampling provides
an intrinsic mechanism to verify and iteratively correct compositions [133]. Thus, EBMs offer a
promising path toward human-like systematicity that remains elusive for existing paradigms and
architectures.

G Counterarguments

G.1 System 2 Thinking

In this paper, strong claims were made regarding the capabilities of current models and their ability
to perform System 2 Thinking. However, there are common counterarguments to our claims, which
we address here.
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G.1.1 System 2 Thinking and Inference-Time Compute Term Usage

Whether the computational effort spent at inference time fully captures what psychologists term
System 2 Thinking is still actively debated. In Section C.1 we outline three reasons for preferring
the broader terminology of System 2 Thinking: (i) it naturally extends to settings such as contin-
ual learning where terms such as “inference-time compute” becomes ambiguous, (ii) it connects
our discussion to a substantial body of cognitive-science work, and (iii) it offers a conceptually
straightforward entry point for readers beyond the machine-learning community.

We believe that Human System 2 Thinking encompasses a far greater depth and complexity than the
specific approaches explored in this paper, such as “Thinking Longer” and “Self-Verification.” We
wish to emphasize that our work does not claim current models replicate the full spectrum of human
System 2 Thinking. Rather, we view the methods presented here as foundational steps toward that
more ambitious long-term goal.

We propose that “System 2 Thinking” offers a useful umbrella term that can effectively encompass
and generalize other existing terminologies, including “inference-time compute,” “test-time compute,”
or “reasoning." A parallel can be drawn with the term “learning” in our field. “Learning” itself
has evolved to describe a wide array of processes, some of which, such as k-Nearest Neighbors
(KNNs) or the specific mechanisms of weight matrix updates in Artificial Neural Networks (ANNs),
represent distinct facets rather than the entirety of human-like learning, meaning these approaches
may not encompass the complexity of true human-like learning. However, despite this breadth and
these simplicities, “learning” has become a cornerstone term, upon which our entire field of machine
learning is named upon.

In a similar vein, while the “thinking” exhibited by the models discussed in this paper may not yet
capture the full nuance and intricacy of human cognition, we believe the term “System 2 Thinking”
can still serve a valuable role. It offers a generalizing framework for existing vocabulary and can
contribute to making complex concepts within the field more accessible and understandable to
newcomers or experts from other fields. Our intention is to contribute to a constructive and unifying
dialogue of intelligent systems.

G.1.2 Is Chain-of-Thought (CoT) Sufficient for System 2 Thinking?

CoT is commonly believed to be sufficient for advanced reasoning to emerge in LLMs. However,
we argue that there are several flaws with CoT preventing advanced thinking capabilities. First,
Chain-of-Thought (CoT) involves reasoning over a discrete state space, which limits the granularity
of “thoughts.” Second, CoT is not an intrinsic architectural capability but an external procedure
applied to token sequences. Ideally, such reasoning should be embedded within the model and
learned during training (unsupervised training, particularly). Third, each token is produced with a
fixed computational budget, restricting the depth of reasoning per step. In contrast, humans allocate
variable effort across steps when reasoning “step by step”. Similarly, models should be able to spend
a variable amount of computation per token, as enabled by EBTs. This aligns with the intuition
behind the saying: “a chain is only as strong as its weakest link”—each step in a chain of thought
should receive sufficient computation to avoid failure points that result in bad reasoning.

H Energy-Based Models (EBMs) Introduction

H.1 Simplified Energy-Based Model (EBM) Introduction

Feed-forward neural networks generally take the form of: given an x predict y (Fig. H.1a). Energy-
Based Models (EBMs) are a family of models that learn the compatibility (unnormalized probability)
over all possible combinations of x and y (Fig. H.1b). Intuitively, this can be seen as learning to
verify the strength of y as a prediction with x as the input. Training models in this manner allows for
representing multiple plausible versions of y compatible with a given x. The differences between
these models is visualized in Fig. H.1.

Formulating models in this manner ultimately brings about two primary questions:
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First question: Assuming we still care about ultimately predicting ŷ how do we use such an EBM to
predict ŷ? With feed forward models, generally we can just input x and get the output of the model
as ŷ, but we can’t do this with EBMs?

With EBMs, what happens is conceptually similar to diffusion models [114], where we (commonly)
initialize ŷ as random noise. Then, we input x and ŷ into the model, and get a single scalar energy
output (our initial energy output) from the model. Now, because our entire model is differentiable,
we can get the gradient from this energy scalar to ŷ and perform gradient descent along the energy
landscape (energy landscapes are surfaces resulting from mapping all possible predictions to scalar
values, visualized in Figure 3) using this gradient (this is the key)! This process is visualized in
Figures 3, 2. This gradient can be seen as the opposite of the noise (e.g., denoising) and therefore
EBMs have strong relations with Diffusion models predicting the noise. EBMs can be seen as a
generalization of diffusion models, where diffusion models are predicting the gradient of the energy
function/scalar (more on this in Section E).

Second question: How do we train an EBM? Generally, models are trained over a dataset of x and y
pairs, but now there are several different possible y values that can be associated with any given x
value—so how does that work?

It turns out that all the training techniques for EBMs boil down to two main categories: contrastive
and regularizing approaches [42].

Contrastive approaches are more common for EBMs and are easier to rationalize about due to their
similarity to GAN discriminators. The idea behind contrastive approaches is to push down on the
energy of positive samples (i.e., the true data), and to push up on the energy of negative samples.
While these positive samples are easy to rationalize about, as they are just the true data, the difficulty
of contrastive EBMs is finding negative samples. Several approach exist, such as GANs, which use a
generator to amortize negative sample generation, or running MCMC (similar to optimization) for
some time. However, as discussed in Section 3.1, such approaches don’t scale well due to the curse
of dimensionality.

Therefore, to achieve a scalable EBM approach, we train EBMs through an optimization procedure
(which has strong resemblance to Langevin Dynamics). That is, EBMs are trained to, starting from
an initial prediction, optimize predictions to the ground truth solution (shown in Figures 3, 2). This
pushes the energy landscape to be locally convex surrounding the ground truth solution, thereby
regularizing the energy landscape to have low energy only on the true data. As mentioned in [71],
this can be seen as being similar to denoising score matching [154].

Commonly, when people learn about EBMs and the iterative denoising/optimization procedure
performed during training, they think of diffusion models, so we include a more in depth comparison
between the two in Section E.2.

(a) Feed Forward Model (b) Energy-Based Model

Figure H.1: Feed-Forward and Energy-Based Model Comparison. Feed-forward models (a),
given an input x, directly try to predict ŷ. Instead of just getting x as an input, EBMs receive both x
and ŷ as an input and learn the compatibility of all possible values of ŷ with x by outputting a scalar
energy value for each combination. Low energy corresponds to high probability, and high energy to
low probability. In practice, ŷ is often initialized as random.

40



H.2 Energy-Based Model Types

Because EBMs are a broad modeling framework, and can generalize many existing approaches, we
aim to provide precise language to distinguish EBM types. We broadly classify the EBMs described
throughout this paper as explicit EBMs, meaning they explicitly define an energy function over
inputs as the entire function being learned. In other words, explicit EBMs directly map all variables
(inputs) to a single scalar energy as the output of the neural network. We define these in contrast
to implicit EBMs, or EBMs where the energy function is not the learned model but rather some
implicit definition of the learned model. For example, with diffusion models, the energy function is
implicitly defined by the learned score network (sθ(x, t)) as the following:

∇xE(x, t) = − sθ(x, t)

E(x, t) = −
∫ x

sθ(u, t) du + C(t) .

Other notable examples of implicit EBMs include Hopfield Networks [158], RNNs [25], and Boltz-
mann machines.

H.3 Energy-Based Model Frequently Asked Questions (FAQ)

• What is energy/compatibility, what does it represent, and how is it learned? What
energy corresponds to what probability?
Energy is just a learned compatibility score between x and y (lower means more likely).
The EBMs described in this paper learn it implicitly as described in Section 3.1 such that
the true data (good pairs) have low energy and bad pairs (non-data) have higher energy.
Probabilities follow:

pθ(x) =
e−Eθ(x,y)

Z(θ)

pθ(x, y) ∝ e−Eθ(x,y)

so the energy E is essentially the (unnormalized) negative log-likelihood up to an additive
constant. The term compatibility is just a term used for intuition.

• Does training EBMs require a full Hessian calculation?
No—the approach described in the paper only requires Hessian-vector products. That makes
training only about a constant 1.66× as expensive as a vanilla feed-forward model given
everything else remains constant and you use a single step.

• Why is low energy good (and high energy bad)? Why not just use probability?
Low energy is good because of the negative exponential. The reason we don’t use prob-
abilities is avoiding normalized probabilities makes the problem much more tractable in
real-world high-dimensional continuous state spaces by removing the focus on explicit
normalization via regularizing the partition function. EBMs come from a long line of work
in statistical physics.

• Is it okay that energies are unnormalized probabilities?
Yes, for most real-world applications, you only ever need sample relative likelihood
comparison; it’s significantly less common to need the exact likelihood of samples. An
example of this is reward models, which can be seen as EBMs (just multiplying the reward
by −1), where all that really matters is the relative reward for choosing which sample to use
or which behavior to perform.

• Is it fine to not do Maximum Likelihood Training?
Contrary to what your intuition may say, the answer is yes! For most real-world distributions,
data lies completely concentrated on a very thin manifold with no defined distribution
outside of this manifold. Thus, directly doing Maximum Likelihood Estimation (MLE)
training would push EBMs to have low energy on the true data manifold and then infinite
energy off that manifold (as the probability of such samples is 0). We don’t want this as it
would make the score (gradient of the energy function) undefined and the energy landscape
untraversable—so not doing MLE makes the problem tractable.
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I Energy-Based Transformers (EBTs) Tutorial

I.1 Improving Stability and Scalability

Energy-Based Models are notorious for instability during training [51–54]. Therefore, we experiment
with several different hyperparameters to increase the stability and scalability of EBTs and EBMs in
general.

I.1.1 Optimization Step Size and Stability

We found that the step size for gradient descent updates of predictions (α) was one of the primary
factors affecting the stability of EBTs. Thus, for S1 models, we make the step size a learnable
parameter (this is not the case for S2 models). We calculate its learning rate by multiplying the
model’s learning rate by the step size learning rate multiplier. We found that the values for the step
size have a large effect on the magnitude of gradients generated for the optimization of predictions.
This is because the step size is directly multiplied by the prediction gradients. Particularly, a smaller
step size results in larger generated gradients, whereas a larger step size results in smaller gradients.
Therefore, the step size needs to be tuned per modality, as the update required for predictions depends
on data. It’s also worth noting that we do not weight decay the step size in any of the models.

We also found that a relatively high optimization step size was necessary (30, 000 for video and
between 5 and 500 for text). Without a high optimization step size, gradient magnitudes continued to
increase throughout training, resulting in unstable training dynamics.

I.1.2 Architecture Stability

For autoregressive models, we found that simply prepending a learnable “step” embedding to
sequences significantly improved scalability and stability, especially for S1 models. This step
embedding mapped a discrete step index (i.e., step 0, 1, etc.) of the current optimization step to an
embedding the same dimension as the model’s embedding. We believe this helped improve stability
by enabling the accumulation of attention mass, as well as enabling less steep energy landscapes
conditioned on the optimization step.

Additionally, we experimented with adaptive layer normalization from the DiT architecture, but
we found that the timestep embedding worked better. We also experimented with several different
normalization and initialization approaches, where we found that the standard Llama2 [87] archi-
tecture and initialization worked best. This involves using RMSNorm, Xavier init [159], SwiGLU
MLP [160], and RoPE [161].

I.1.3 System 2 Thinking Hyperparameter Stability

For S2 models, we found certain hyperparameters to be essential for the stability and scalability of
models. First, we found that using a lower number of optimization steps resulted in more stability, as
using more optimization steps necessitates longer gradient chains. Additionally, we found that the
strategy used for the randomization of α to be very important for stability. Particularly, we found that
randomizing α with a single value for an entire batch resulted in issues with training convergence. We
believe this is because using the same value for every element in the batch resulted in high-variance
gradients. Thus, when randomizing α differently for every batch and sequence element, we found
training convergence to be more stable. It’s possible that randomizing the number of optimization
steps would yield similar results in reducing gradient variance, however, we did not experiment with
such a configuration.

I.1.4 Clamping Optimization Gradients for Stability

We found that clamping gradients of the energy function with respect to predictions (or prediction
update gradients) could help improve training stability at the cost of some slight reductions in
convergence speed. We do not conduct any experiments in the paper with clamped prediction
gradients as we found that the other hyperparameters were sufficient for stable training, however, it’s
a potentially useful trick worth discussing.
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I.1.5 Normalizing Data for Stability

We found that normalizing/standardizing input data was crucial for the stability of EBTs. An example
of this was in our NLP experiments, where we ran experiments with and without normalizing proba-
bility distributions. The experiments with unnormalized distributions often had extreme activations
as well as large loss spikes, whereas the experiments with normalized distributions (by applying
softmax) were stable.

I.2 How to Train Your EBT

The hyperparameters used for training EBTs are extremely important and can often be highly sensitive
towards performance, so here we offer a guide toward hyperparameter tuning. First, we recommend
starting off with training S1-EBTs, which are the easiest and most stable variant of EBTs not designed
for System 2 Thinking. Then, once S1-EBTs can be trained succesfully and scaled, we recommend
changing the hyperparameters gradually towards the hyperparameters used for S2 models (we say
gradually here as occasionally these parameters can cause instability and require additional tuning).

When training S1 EBTs, we recommend tuning hyperparameters in the following order:

• First, tune standard hyperparameters such as Learning Rate (LR), batch size, etc. Having a
high batch size helps with stability by making gradients less noisy (because you initialize
predictions from random noise this makes gradients noisier).

• Second, start tuning S1-specific hyperparameters—primarily alpha and its LR multiplier
(we recommend keeping its LR multiplier around 3x the value of alpha) and then tuning the
number of optimization steps.

• Third, potentially tune whether the step size is learnable and try other EBT architectures
(inspired by DiT [26] we tried a time embedding as well as adaptive layer normalization).

Once you have tuned these, the model should be stable and fine for most use cases. At which point, if
you are desiring System 2 capabilities, you can proceed to the S2 models I.3. Some potential metrics
to monitor and look out for include the gradient magnitudes (if these increase too much or spike a lot
that’s a bad sign) and the gap between the initial and final energy after optimization (if this is too
high or low it could be a sign your model’s alpha value needs to be adjusted).

Following [71], we give pseudocode for training EBTs in natural language for language modeling
(Listing 1) as well as in computer vision for autoregressive video modeling (Listing 2). The pseu-
docode is primarily for S2 models without any energy landscape regularization techniques. The
first primary design decision in the presented pseudocode is whether or not to detach predictions in
between steps. Not detaching predictions in between steps allows for more “Thinking Time” before
making predictions, but makes the gradient computation graph longer and therefore increases the
likelihood of stability issues with gradients. Similarly, calculating the loss at every step versus solely
the last step enables model to “think for longer” before needing to make accurate predictions, and
therefore affects the convexity and smoothness of the energy landscape. For S2 models, we found
that not detaching between steps was best, and similarly that calculating the loss only at the last step
was best. For S1 models, we found the opposite to be most stable. Generally, if one is calculating
the loss only at the last step, then one should not detach between steps as it’s best if the gradient
propagates to previous steps in this case. For more details on these techniques, we refer the reader to
the source code as well as Section I.3.

# make sure to enable gradient tracking
with torch.set_grad_enabled(True):

loss_fn = nn.CrossEntropyLoss(weight=None , ignore_index=
tokenizer_pad_token_id)

context_embeddings = self.embeddings(input_ids[:, :-1]) # B, S, D
next_tokens = input_ids[:, 1:]
next_embeddings = self.embeddings(next_tokens) # B, S, V; are just
used for shaping next tensor
predicted_distributions = torch.randn_like(next_embeddings) # B, S
, V; initialize predictions as random
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for _ in range(num_steps):
# Can optionally detach predicted distributions so that no

gradient flows through past steps
# predicted_distributions = predicted_distributions.detach ()

predicted_embeddings = self.vocab_to_embed(softmax(
predicted_distributions)) # B, S, D; need to proj. to embed space
for transformer to work in, use linear layer , weighted sum , etc

all_embeddings = torch.cat(( context_embeddings ,
predicted_embeddings), dim=1) # B, 2S, D

predicted_energies = self.transformer(all_embeddings) # B, S,
1; this returns only energies for the predicted_embeddings

# Compute the gradient of predicted energies w.r.t. predicted
distributions

predicted_distributions_grad = torch.autograd.grad(
predicted_energies.sum(),
predicted_distributions ,
create_graph=True

)[0] # B, S, V

# Perform gradient descent w.r.t. the energy function where
self.alpha is the optimization step size

predicted_distributions = predicted_distributions - self.alpha
* predicted_distributions_grad

# Calculate cce loss based on predicted and ground truth
distributions , optionally at each optimization step or only at the
end
cce_loss = loss_fn(predicted_distributions , next_tokens)

Listing 1: Autoregressive Language Model Training Pseudocode in PyTorch

# make sure to enable gradient tracking
with torch.set_grad_enabled(True):

loss_fn = torch.nn.SmoothL1Loss(beta =1.0) # use whichever loss
function desired

context_embeddings = embeddings [:, :-1] # B, S, D
next_embeddings = embeddings [:, 1:] # B, S, D
predicted_embeddings = torch.randn_like(next_embeddings) # B, S, D
; initialize predictions as random

for _ in range(num_steps):
# Can optionally detach embeddings so that no gradient flows

through past steps
# predicted_embeddings = predicted_embeddings.detach ()

all_embeddings = torch.cat(( context_embeddings ,
predicted_embeddings), dim=1) # B, 2S, D

predicted_energies = self.transformer(all_embeddings) # this
returns only energies for the predicted_embeddings # B, S, 1

# Compute the gradient of predicted energies w.r.t. predicted
embeddings

predicted_embeddings_grad = torch.autograd.grad(
predicted_energies.sum(),
predicted_embeddings ,
create_graph=True

)[0] # B, S, D
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# Perform gradient descent w.r.t. the energy function where
self.alpha is the optimization step size

predicted_embeddings = predicted_embeddings - self.alpha *
predicted_embeddings_grad

# Calculate reconstruction loss based on predicted and ground
truth embeddings , optionally at each optimization step or only at
the end
reconstruction_loss = loss_fn(predicted_embeddings ,
next_embeddings)

Listing 2: Autoregressive Video Model Training Pseudocode in PyTorch

I.3 How to Think Using Your EBT

Once an S1 EBT has been trained, we recommend tuning the System 2 hyperparameters in the
following manner:

• Remove detaching tensors between optimization steps and add loss truncation so the loss is
only calculated at the final step.

• Then, tune alpha, as it’s by far the most important EBT-specific hyperparameter. But, do not
make it learnable.

• Next, tune the number of optimization steps, including potentially a minimum and maximum
number when randomizing the number of steps.

• Then add a replay buffer, Langevin Dynamics, and eventually a randomized alpha (step
size). Tune all of these in tandem while tweaking the earlier parameters (particularly alpha).

It’s possible that randomizing the number of steps for each sample within a batch would work better
(similar to randomizing the alpha value within a batch). Additionally, it’s worth mentioning that all
optimization steps are performed along the same energy landscape (same time embedding condition),
unlike with S1-EBTs using multiple time steps.
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